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Parallel CRC Realization

Giuseppe Campobello , Giuseppe Patanè , Marco Russo

Abstract

This paper presents a theoretical result in the context of realizing high speed hardware for parallel CRC

checksums. Starting from the serial implementation widely reported in literature, we have identified a recursive

formula from which our parallel implementation is derived. In comparison with previous works, the new scheme is

faster and more compact and is independent of the technology used in its realization. In our solution, the number

of bits processed in parallel can be different from the degree of the polynomial generator. Lastly, we have also

developed high level parametric codes that are capable of generating the circuits autonomously, when only the

polyonomial is given.

Index Terms

parallel CRC, LFSR, error-detection, VLSI, FPGA, VHDL, digital logic

I. INTRODUCTION

Cyclic Redundancy Check (CRC) [1]–[5] is widely used in data communications and storage devices as

a powerful method for dealing with data errors. It is also applied to many other fields such as the testing of

integrated circuits and the detection of logical faults [6]. One of the more established hardware solutions

for CRC calculation is the Linear Feedback Shift Register (LFSR), consisting of a few flip-flops (FFs) and
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logic gates. This simple architecture processes bits serially. In some situations, such as high-speed data

communications, the speed of this serial implementation is absolutely inadequate. In these cases, a parallel

computation of the CRC, where successive units of � bits are handled simultaneously, is necessary or

desirable.

Like any other combinatorial circuit, parallel CRC hardware could be synthetized with only two levels of

gates. This is defined by laws governing digital logic. Unfortunately, this implies a huge number of gates.

Furthermore, the minimization of the number of gates is an �� -hard optimization problem. Therefore

when complex circuits must be realized, one generally use heuristics or seeks customized solutions.

This paper presents a customized, elegant, and concise formal solution for building parallel CRC

hardware. The new scheme generalizes and improves previous works. By making use of some mathematical

principless, we will derive a recursive formula that can be used to deduce the parallel CRC circuits.

Furthermore, we will show how to apply this formula and to generate the CRC circuits automatically. As

in modern synthesis tools, where it is possible to specify the number of inputs of an adder and automatically

generate necessary logic, we developed the necessary parametric codes to perform the same tasks with

parallel CRC circuits. The compact representation proposed in the new scheme provides the possibility of

saving hardware significantly and reaching higher frequencies in comparison to previous works. Finally,

in our solution, the degree of the polynomial generator, �, and the number of bits processed in parallel,

�, can be different.

The article is structured as follows: Sect. II illustrates the key elements of CRC. In Sect. III we

summarize previous works on parallel CRCs to provide appropriate background. In Sect. IV we derive

our logic equations and present the parallel circuit. In addition, we illustrate the performance by some

examples. Finally, in Sect. V we evaluate our results by comparing them with those presented in previous

works. The codes implemented are included in appendix.
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Fig. 1. CRC description. � is the sequence for error detecting, � is the divisor and � is the quotient. �� is the original sequence of � bits

to transmit. Finally, �� is the FCS of � bits.

II. CYCLIC REDUNDANCY CHECK

As already stated in the introduction, CRC is one of the most powerful error-detecting codes. Briefly

speeking, CRC can be described as follows. Let us suppose that a transmitter, T, send a sequence, ��,

of � bits ���� ��� � � � � ����� , to a receiver, R. At the same time, T generates another sequence, ��, of

� bits ����� �
�

�� � � � � �
�

����, to allow the receiver to detect possible errors. The sequence �� is commonly

known as a Frame Check Sequence (FCS). It is generated by taking into account that the fact that the

complete sequence, � � �� � ��, obtained by concatenating of �� and ��, has the property that it is

divisible (following a particular arithmetic) by some predetermined sequence � , ���� ��� � � � � ���, of �+1

bits. After T sends � to R. R divides � (i.e. the message and the FCS) by � , using the same particular

arithmetic, after it receives the message. If there is no remainder, R assumes there was no error. Fig. 1

illustrates how this mechanism works.

A modulo 2 arithmetic is used in the digital realization of the above concepts [3]: the product operator

is accomplished by a bitwise AND, whereas both the sum and subtraction are accomplished by bitwise

XOR operators. In this case, a CRC circuit (modulo 2 divisor) can be easily realized as a special shift

register, called LFSR. Fig. 2 shows a typical architecture. It can be used by both the transmitter and the

receiver. In the case of the transmitter, the dividend is the sequence �� concatenated with a sequence of
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� zeros to the right. The divisor is � . In the simpler case of a receiver, the dividend is the received

sequence and the divisor is the same � .

In Fig. 2 we show that � FFs have common clock and clear signals. The input 	�� of the 
th FF is

obtained by taking a XOR of the �
� ��th FF output and a term given by the logical AND between ��

and 	���. The signal 	�� is obtained by taking a XOR of the input � and 	���. If �� is zero, only a shift

operation is performed (i.e. XOR related to 	�� is not required); otherwise the feedback 	��� is XOR-ed

with 	���. We point out that the AND gates in Fig. 2 are unnecessary if the divisor � is time-invariant.

The sequence �� is sent serially to the input � of the circuit starting from the most significant bit, ��. Let

us suppose that the � bits of the sequence �� are an integral multiple of �, the degree of the divisor � .

The process begins by clearing all FFs. Then, all � bits are sent, once per clock cycle. Finally, � zero

bits are sent through �. In the end, the FCS appears at the output end of the FFs.

Another possible implementation of the CRC circuit [7] is shown in Fig. 3. In this paper we will call it

LFSR2. In this circuit, the outputs of FFs (after � clock periods) are the same FCS computed by LFSR.

It should be mentioned that, when LFSR2 is used, no sequence of � zeros has to be sent through �. So,

LFSR2 computes FCS faster than LFSR. In practice, the message length is usually much greater than �;

so LFSR2 and LFSR have similar performance.

III. RELATED WORKS

Parallel CRC hardware is attractive because, by processing the message in blocks of � bits each, it is

possible to reach a speed-up of � with respect to the time needed by the serial implementation. Here we

report the main works in literature. Later, in Section V we compare our results with those presented in

literature.

� As stated by Albertengo and Sisto [7] in 1990, previous works [8]–[10] ”dealt empirically with the

problem of parallel generation of CRCs”. Furthermore, ”the validity of the results is in any case

restricted to a particular generator polynomial”. Albertengo and Sisto [7] proposed an interesting

analytical approach. Their idea was to apply the digital filter theory to the classical CRC circuit.
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Fig. 2. One of the possible LFSR architectures.

They derived a method for determining the logic equations for any generator polynomial. Their

formalization is based on a �-trasform. To obtain logic equations, many polynomial divisions are

needed. Thus, it is not possible to write a synthesizable VHDL code that automatically generates the

equations for parallel CRCs. The theory they developed is restricted to cases where the number of

bits processed in parallel is equal to the polynomial degree (� � �).

� In 1996, Braun et al. [11] presented an approach suitable for FPGA implementation. A very complex

analytical proof is presented. They developed a special heuristic logic minimization to compute CRC

checksums on FPGA in parallel. Their main results are a precise formalism and a set of proofs to

derive the parallel CRC computation starting from the bit-serial case. Their work is similar to our

work but their proofs are more complex.
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Fig. 3. LFSR2 architecture

� Later, McCluskey [12] developed a high speed VHDL implementation of CRC suitable for FPGA

implementation. He also proposed a parametric VHDL code accepting the polynomial and the input

data width, both of arbitrary length. This work is similar to ours, but the final circuit has a worse

performance.

� In 2001 Sprachmann [13] implemented parallel CRC circuits of LSFR2. He proposed interesting

VHDL parametric codes. The derivation is valid for any polynomial and data-width �, but equations

are not so optimized.

� In the same year, Shieh et al. [14] proposed another approach based on the theory of the Galois field.

The theory they developed is quite general like those presented in our paper (i.e. � may differ from

�). Howerver their hardware implementation is strongly based on lookahead techniques [15], [16];

Thus their final circuits require more area and elaboration time. The possibility to use several smaller
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look-up tables (LUTs), is also shown, but the critical path of the final circuits grows substantially.

Their derivation method is similar to ours but, as in [13], equations are not optimized (see Section

V).

IV. PARALLEL CRC COMPUTATION

Starting from the circuit represented in Fig. 2 we have developed our parallel implementation of the

CRC. In the following, we assume that the degree of polynomial generator (�) and the length of the

message to be processed (�) are both multiples of the number of bits to be processed in parallel (�). This

is typical in data transmission where a message consists of many bytes and the polynomial generator, as

desired parallelism, consist of a few nibbles.

In the final circuit that we will obtain, the sequence �� plus the zeros are sent to the circuit in blocks

of � bits each. After ���
�

clock periods, the FFs output give the desired FCS.

From linear systems theory [17] we know that a discrete-time, time-invariant linear system can be

expressed as follows:

�����
����

�
 � �� � �
�
� ����
�

� �
� � �
�
� � ���
�

(1)

where 
 is the state of the system, � the input and � the output. We use � , �, � , � to denote matrices,

and use 
 , � , and � to denote column vectors.

The solution of the first equation of the system (1) is:


�
� � � �
��� � �� ���� � � ��� ������� � � ���
� ���� (2)

We can apply eq. (2) to the LFSR circuit (Fig. 2). In fact, if we use � to denote the XOR operation, and

the symbol � to denote bitwise AND, and � to denote the set �0,1�, it is easy to demonstrate that the

structure ����� �� is a ring with identity (Galois Field GF(2) [18]). From this consideration the solution

of the system (1)(expressed by (2)) is valid even if we replace multiplication and addition with the AND
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and XOR operators respectively. In order to point out that the XOR and AND operators must be also

used in the product of matrices, we will denote their product by �.

Let us consider the circuit shown in Fig. 2. It is just a discrete-time, time-invariant linear system for

which: the input ��
� is the 
-th bit of the input sequence; the state 
 represents the FFs output and the

vector � coincides with 
 , i.e. � and � are the identity and zero matrices respectively. Matrix � and �

are chosen according to the equations of serial LFRS. So, we have:


 � �	��� � � �	� 	��
�

� � �� The identity matrix of size ���

� � �� � � � � ���

� � ��

� � �� � � � � ��� �

� �

�
������������������

���� � � � � � �

���� � � � � � �

� � � � � � � � � � � � � � �

�� � � � � � �

�� � � � � � �

�
�����������������	

where �� are the bits of the divisor � (i.e. the coefficients of the generator polynomial).

When 
 coincides with �, the solution derived from eq. (2) with substitution of the operators, is:
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��� � �� �
���� �� � � ������� � � ���� � ���� � (3)

where 
��� is the initial state of the FFs. Considering that the system is time-invariant, we obtain a

recursive formula:


 � � �� �
 �� (4)

where, for clarity, we have indicated with 
 � and 
 , respectively the next state and the present state of the

system, and � � ����� � � ��� ���
� assumes the following values: �� � � � ���� � � � ������ , �� � � ����� � � � ������� ,

etc., where �� are the bits of the sequence �� followed by a sequence of � zeros.

This result implies that it is possible to calculate the � bits of the FCS by sending the � �� bits of

the message �� plus the zeros, in blocks of � bits each. So, after ���
�

clock periods, 
 is the desired

FCS.

Now, it is important to evaluate the matrix � �. There are several options, but it is easy to show that

the matrix can be constructed recursively, when 
 ranges from 2 to �:

� � �

�
�������������

� ��� �

�
�������������

����

� � �

��

��

�
������������	





















the first �-1

columns of � ���

�
������������	

(5)

This formula permits an efficient VHDL code to be written as we will show later.

From eq. (5) we can obtain �� when �� is already available. If we indicate with � � the vector

����� � � � �� ���
� we have:

�� �
�
���� � � � � � �� � � � � �





����

�

�
(6)

where ���� is the identical matrix of order �� �. Furthermore, we have:
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�� � ����� � � �� � � � �� � � ��� �� (7)

So, �� may be obtained from �� as follows: the first � columns of � � are the last � columns of ��.

The upper right part of �� is ���� and the lower right part must be filled with zeros.

Let us suppose, for example, we have �=�1,0,0,1,1�. It follows that:

� �

�
�������������

� � � �

� � � �

� � � �

� � � �

�
������������	

Then, if � � � � 	, after applying eq. (5) we obtain:

� � �

�
�������������

� � � �

� � � �

� � � �

� � � �

�
������������	

Finally, if we use �	�� 	
�

� 	
�

� 	
�

��
� , �	� 	� 	� 	��� , and ��� �� �� ���

� to denote the three column vectors


 �, 
 , and � in equation (4) respectively, we have:

	�� � 	� � 	� � 	� � ��

	�� � 	� � 	� � ��

	�� � 	� � 	� � 	� � ��

	�� � 	� � 	� � 	� � 	� � ��

As indicated above, having � � available, a power of � of lower order is immediately obtained. So, for

example:
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� � �

�
�������������

� � � �

� � � �

� � � �

� � � �

�
������������	

The same procedure may be applied to derive equations for parallel version of LFSR2. In this case the

matrix � is � � � �� and equation (4) becomes:


 � � �� � �
 ��� (8)

where � assumes the values ��� � � � ������ � � ���
� , ��� � � � ������� � � ���� , etc..

A. Hardware realization

A parallel implementation of the CRC can be derived from the above considerations. Yet again, it

consists of a special register. In this case the inputs of the FFs are the exclusive sum of some FF outputs

and inputs. Fig. 4 shows a possible implementation. The signals ���� (Enables) are taken from ��. More

precisely, ���� is equal to the value in � � at the �th row and �th column. Even in the case of Fig. 4,

if the divisor � is fixed, then the AND gates are unnecessary. Furthermore, the number of FFs remains

unchanged. We recall that if � � � then inputs ���� � � ��� are not needed. Inputs ���� � � ��� are the bits

of dividend (Sect. II) sent in groups of � bits each. As to the realization of the LFSR2, by considering

eq. (8) we have a circuit very similar to that in Fig. 4 where inputs � are XORed with FF outputs and

results are fed back.

In the appendix, the interested reader can find the two listings that generate the correct VHDL code

for the CRC parallel circuit we propose here.

Actually, for synthesizing the parallel CRC circuits, using a Pentium II 350 MHz with 64 MB of

RAM, less than a couple of minutes are necessary in the cases of CRC-12, CRC-16, and CRC-CCITT.

For CRC-32 several hours are required to evaluate �� by our synthesis tool; We have also written a
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Fig. 4. Parallel CRC architecture

MATLAB code that is able to generate a VHDL code. The code produces logic equations of the desired

CRC directly; Thus it is synthesized much faster than the previous VHDL code.

B. Examples

Here, our results, applied to four commonly used CRC polynomial generators are reported. As we stated

in the previous paragraph, � � may be derived from ��, so we report only the �� matrix. In order to

improve the readability, matrices �� are not reported as matrices of bits. They are reported as a column

vector in which each element is the hexadecimal representation of the binary sequence obtained from the

corresponding row of ��, where the first bit is the most significant. For the example reported above we

have � � � �7 C E F�� .

� CRC-12: � � �1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1�

� ��

CRC-12 � �CFF 280 140 0A0 050 028 814 40A 205 DFD A01 9FF ��

� CRC-16: � � �1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1�

� ��

CRC-16 � �DFFF 3000 1800 0C00 0600 0300 0180 00C0 0060 0030 0018 000C 8006 4003 7FFE
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BFFF ��

� CRC-CCITT: � � �1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1�

� ��

CRC-CCITT � �0C88 0644 0322 8191 CC40 6620 B310 D988 ECC4 7662 3B31 9110 C888 6444

3222 1911 ��

� CRC-32: � � �1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0,

1�

� ��

CRC-32 � �FB808B20 7DC04590 BEE022C8 5F701164 2FB808B2 97DC0459 B06E890C

58374486 AC1BA243 AD8D5A01 AD462620 56A31310 2B518988 95A8C4C4

CAD46262 656A3131 493593B8 249AC9DC 924D64EE C926B277 9F13D21B

B409622D 21843A36 90C21D1B 33E185AD 627049F6 313824FB E31C995D

8A0EC78E C50763C7 19033AC3 F7011641 ��

V. COMPARISONS

� Albertengo and Sisto [7] based their formalization on �-transform. In their approach, many poly-

nomial divisions are required to abtain logic equations. This implies that it is not possible to write

synthesizable VHDL codes that automatically generate CRC circuits. Their work is based on the

LFSR2 circuit. As we have already shown in Sect. IV, our theory can be applied to the same circuit.

However eq. (8) shows that, generally speaking, one more level of XOR is required with respect

to the parallel LFSR circuit we propose. This implies that our proposal is, generally, faster. Further

considerations can be made if FPGA is chosen as the target technology. Large FPGAs are, generally,

based on look-up-tables (LUTs). A LUT is a little SRAM which usually has more than two inputs

(tipically four or more). In the case of high speed LFSR2 there are many two-input XOR gates (see

[7] page 68). This implies that, if the CRC circuit is realized using FPGAs, many LUTs are not

completely utilized. This phenomenon is less critical in the case of LFSR. As a consequence, parallel
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LFSR realizations are cheaper than LFSR2 ones. In order to give some numerical results to confirm

our considerations, we have synthesized the CRC32 in both cases. With LFSR we needed 162 LUTs

to obtain a critical path of 7.3 ns, whereas, for LFSR2, 182 LUTs and 10.8 ns are required.

� The main difference between our work and Braun et al’s [11] is the dimension of the matrices to

be dealt with and the complexity of the proofs. Our results are simpler, i.e., we work with smaller

matrices and our proofs are not so complex as those present in [11].

� McCluskey [12] developed a high speed VHDL implementation of CRC suitable for FPGA imple-

mentation. The results he obtained are similar to ours (i.e. he started from the LFSR circuit and

derived an empirical recursive equation). But he deals with matrices a little greater than the ones

we use. Even in this case only XOR are used in the final representation of the formula. Accurate

results are reported in the paper dealing with two different possible FPGA solutions. One of them

offers us the possibility of comparing our results with those presented by McCluskey. The solution

suitable for our purpose is related to the use of the ORCA 3T30-6 FPGA. This kind of FPGA uses a

technology of 0.3-0.35�m containing 196 Programmable Function Units (PFUs) and 2436 FFs. Each

PFU has 8 LUTs each with 4 inputs and 10 FFs. One LUT introduces a delay of 0.9 ns. There is a

flexible input structure inside the PFUs and a total of 21 inputs per PFU. The PFU structure permits

the implementation of a 21-input XOR in a single PFU. We have at our disposal the MAX+PLUSII

ver.10.0 software1 to synthesize VHDL using ALTERA FPGAs. We have synthesized a 21-input

XOR and have realized that 1 Logic Array Block (LAB) is required, for synthesizing both small

and fast circuits. In short, each LAB contains some FFs and 8 LUTs each with 4 inputs. We have

synthesized our results regarding the CRC-32. The technology target was the FLEX-10KATC144-1.

It is smaller than ORCA3T30. The process technology is 0.35 �m, and the typical LUT delay is

0.9 ns. When � � � � 
�, the synthesized circuit needed 162 logic cells (i.e., a total of 162 LUTs)

with a maximum operating frequency of 	137 MHz. McCluskey, in this case, required 36 PFUs (i.e.,

1available at www.altera.com
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a total of 288 LUTs) with a speed of 105.8 MHz. So, our final circuit requires less area (	 ��
)

and has greater speed (	 
�
). The better results obtained with our approach are due to the fact

that matrices are different (i.e. different starting equations) and, what is more, McCluskey’s matrix

is larger.

� We have compiled VHDL codes reported in [13] using our Altera tool. The implementation of

our parallel circuit usually requires less area (70-90
) and has higher speed (a speedup of 	4 is

achieved). For details see Table I. There are two main motives that explain these results: the former

is the same mentioned at the beginning of this section regarding the differences between LFSR and

LFSR2 FPGA implementation. The latter is that our starting equations are optimized. More precisely,

in our equation of 	��, term 	� appears only once or not at all, while, in the starting equation of [13]

	� may appear more (up to � times), as it is possible to observe in Fig.4 in [13]. Optimizations like

	� � 	� � � and 	� � 	� � 	� � 	� must be processed from a synthesis tool. When � grows, many

expressions of this kind are present in the final equations. Even if very powerful VHDL synthesis

tools are used, it is not sure that they are able to find the most compact logical form. Even when

they are able to, more synthesis time is necessary with respect to our final VHDL code.

� In [14] a detailed performance evaluation of the CRC-32 circuit is reported. For comparison purposes

we take results from [14] when � � � � 
�. For the matrix realization they start from a requirement

of 448 2-input XORs and a critical path of 15 levels of XORs. After Synopsys optimization they

obtain 408 2-input XORs and 7 levels of gates. We evaluated the number of required 2-input XORs

starting from the matrix � �, counting the ones and supposing the realization of XORs with more

than two inputs with binary tree architectures. So, for example, to realize a 8-input XOR, 3 levels

of 2-input XORs are required with a total of 7 gates. This approach gives 452 2-input XORs and

only 5 levels of gates before optimization. This implies that our approach produces faster circuits,

but the circuits are a little bit larger. However, with some simple manual tricks it is possible to obtain

hardware savings. For example, identifying common XOR sub-expressions and realizing them only
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TABLE I

PERFORMANCE EVALUATION FOR A VARIETY OF PARALLEL CRC CIRCUITS. RESULTS ARE FOR � � �. LUTS IS THE NUMBER OF

LOOK-UP TABLES USED IN FPGA; CPD IS THE CRITICAL PATH DELAY; �� AND �� ARE THE SYNTHESIS TIMES, THE FIRST TIME REFERS

TO THE CRCGEN.VHD AND THE SECOND TIME REFERS TO THE VHDL GENERATED WITH MATLAB. FOR [13] �� IS THE SYNTHESIS

TIME OF THE VHDL CODE REPORTED IN THIS PAPER USING OUR SYNTHESIS TOOL.

Polynomial LUTs CPD ��,��

CRC12 [our] 21 6 ns 20,7

CRC12 [13] 27 24.2 ns 7

CRC16 [our] 28 7.2 ns 100,8

CRC16 [13] 31 28.1 ns 9

CRC-CCITT [our] 39 6.9 ns 113,8

CRC-CCITT [13] 30 10.2 ns 10

CRC32 [our] 162 7.3 ns long,15

CRC32 [13] 220 30.5 ns 360

once, the number of required gates decreases to 370. With other smart tricks it is possible to obtain

more compact circuits. We do not have at our disposal the Synopsys tool, so we do not know which

is the automatic optimization achievable starting from the 452 initial XORs.
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APPENDIX

A. VHDL code

In Figs. 5 and 6 we present two VHDL listings, named respectively crcpack.vhd and crcgen.vhd. They

are the codes we developed describing our parallel realization of both LFSR and LFSR2 circuits. It is

necessary to assign to the constant CRC the divisor � , in little endian form; to CRCDIM the value of
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1 l i b r a r y i e e e ;
2 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
3 package c r c p a c k i s
4 c o n s t a n t CRC16 : s t d l o g i c v e c t o r ( 1 6 downto 0 ) : =
5 ”11000000000000101” ;
6 c o n s t a n t CRCDIM: i n t e g e r : = 1 6 ;
7 c o n s t a n t CRC : s t d l o g i c v e c t o r (CRCDIM downto 0 ) : =
8 CRC16 ;
9 c o n s t a n t DATA WIDTH: i n t e g e r range 1 to CRCDIM: = 1 6 ;

10 type m a t r i x i s array (CRCDIM�1 downto 0 ) of
11 s t d l o g i c v e c t o r (CRCDIM�1 downto 0 ) ;
12 end c r c p a c k ;

Fig. 5. The package: crcpack.vhd

1 l i b r a r y i e e e ;
2 use i e e e . s t d l o g i c 1 1 6 4 . a l l ; use work . c r c p a c k . a l l ;
3
4 e n t i t y c r c g e n i s
5 port ( r e s , c l k : s t d l o g i c ;
6 Din : s t d l o g i c v e c t o r (DATA WIDTH�1 downto 0 ) ;
7 Xout : out s t d l o g i c v e c t o r (CRCDIM�1 downto 0 ) ) ;
8 end c r c g e n ;
9

10 a r c h i t e c t u r e r t l of c r c g e n i s
11 s i g n a l X, X1 , X2 , Dins :
12 s t d l o g i c v e c t o r (CRCDIM�1 downto 0 ) ;
13 beg in
14
15 process ( Din )
16 v a r i a b l e Dinv : s t d l o g i c v e c t o r (CRCDIM�1 downto 0 ) ;
17 beg in
18 Dinv : = ( o t h e r s =� ’0 ’ ) ;
19 Dinv (DATA WIDTH�1 downto 0 ) : = Din ; ��LFSR
20 ��LFSR2
21 ��Dinv (CRCDIM�1 downto CRCDIM�DATA WIDTH) : = Din ;
22 Dins�=Dinv ;
23 end process ;
24 X2�=X; ��LFSR
25 ��X2�=X xor Dins; ��LFSR2
26
27 process ( r e s , c l k )
28 beg in
29 i f r e s = ’ 0 ’ then X�=(o t h e r s =� ’0 ’ ) ;
30 e l s i f r i s i n g e d g e ( c l k ) then X�=X1 xor Dins ;��LFSR
31 �� t h e n X�=X1; ��LFSR2
32 end i f ;
33 end process ;
34 Xout�=X;
35
36 �� This p r o c e s s b u i l d m a t r i x M=F ˆw
37 process (X2)
38 v a r i a b l e Xtemp , v e c t , v e c t 2 :
39 s t d l o g i c v e c t o r (CRCDIM�1 downto 0 ) ;
40 v a r i a b l e M, F : m a t r i x ;
41 beg in
42 ��Matr ix F
43 F ( 0 ) : =CRC(CRCDIM�1 downto 0 ) ;
44 f o r i in 0 to CRCDIM�2 l oop
45 v e c t : = ( o t h e r s =� ’0 ’ ) ; v e c t (CRCDIM�i �1 ) : = ’ 1 ’ ;
46 F ( i +1) := v e c t ;
47 end loop ;
48 ��Matr ix M=F ˆw
49 M(DATA WIDTH�1):=CRC(CRCDIM�1 downto 0 ) ;
50 f o r k in 2 to DATA WIDTH l oop
51 v e c t 2 :=M(DATA WIDTH�k + 1 ) ; v e c t : = ( o t h e r s =� ’0 ’ ) ;
52 f o r i in 0 to CRCDIM�1 l oop
53 i f v e c t 2 (CRCDIM�1�i ) = ’ 1 ’ then v e c t := v e c t xor F ( i ) ;
54 end i f ;
55 end loop ;
56 M(DATA WIDTH�k ) : = v e c t ;
57 end loop ;
58 f o r k in DATA WIDTH�1 to CRCDIM�1 l oop
59 M( k ) : = F ( k�DATA WIDTH+ 1 ) ;
60 end loop ;
61 �� C o m b i n a t i o n a l l o g i c e q u a t i o n s : X1 = M ( x ) X
62 Xtemp : = ( o t h e r s =� ’0 ’ ) ;
63 f o r i in 0 to CRCDIM�1 l oop
64 v e c t :=M( i ) ;
65 f o r j in 0 to CRCDIM�1 l oop
66 i f v e c t ( j ) = ’ 1 ’ then
67 Xtemp ( j ) : = Xtemp ( j ) xor X2(CRCDIM�1�i ) ;
68 end i f ;
69 end loop ;
70 end loop ;
71 X1�=Xtemp ;
72 end process ;
73 end r t l ;

Fig. 6. The code: crcgen.vhd
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1 f u n c t i o n [ S , Fk , Dimxor , FH]= c r c g e n (CRC ,DATAWIDTH , o p t )
2 CRC16 = [ 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 ] ;
3
4 S=’�� CRC= ’ ;
5 i f ( i s s t r (CRC ) = = 0 ) , p=CRC ; conve r =1 ;
6 e l s e i f ( ( f i n d s t r (CRC , ’CRC’ )==1) & e x i s t (CRC ) ) ,
7 conve r = 1 ; p= e v a l (CRC ) ;
8 e l s e i f ( e x i s t ( ’ sym2poly ’ ) = = 2 ) ,
9 p=sym2poly (CRC ) ; conve r =0 ;

10 e l s e error ( ’ The re i s n o t Symbolic t o o l b o x ’ ) ;
11 end ;
12
13 n= s i z e ( p , 2 ) ;
14 i f conve r ==1,
15 f o r i =1 : n ,
16 i f p ( 1 , i ) = = 1 ,S=[S , ’ x ˆ ’ , num2str ( n�i ) , ’ + ’ ] ; end ;
17 end ;
18 S=S ( 1 : s i z e ( S ,2 )�3) ;
19 e l s e S=[S , CRC ] ;
20 end ;
21
22 %F i r s t b i t o f CRC i s n o t i m p o r t a n t : i t i s a lways 1
23 P=p ( 2 : n ) ; n=n�1; F= zeros ( n ) ; F ( 1 : n , 1 ) = P ’ ;
24 F ( 1 : n�1,2: n )= eye ( n�1); k=DATAWIDTH ; Fk=rem ( F ˆ k , 2 ) ;
25 f o r i =1 : n ,
26 s t r =[ ’X1 ( ’ , num2str ( n�i ) , ’ )�= ’ ] ;
27 f o r j =1 : n ,
28 i f Fk ( i , j ) = = 1 ,
29 s t r =[ s t r , ’X2 ( ’ , num2str ( n�j ) , ’ ) xo r ’ ] ;
30 end ;
31 end ;
32 s t r =[ s t r ( 1 : s i z e ( s t r , 2 )�5 ) , ’ ; ’ ] ;
33 S= str2mat ( S , s t r ) ;
34 Dimxor ( i )= nnz ( Fk ( i , : ) ) ;
35 end ;
36
37 [ ’ Maximal number o f xor i n p u t i s ’ , . . .
38 num2str (max ( Dimxor ) ) ]
39
40 f o r i =1 : n ,
41 Dec ( i ) = 0 ;
42 f o r j =1 : n , Dec ( i )= Dec ( i ) + 2 ˆ ( n�j )�Fk ( i , j ) ; end ;
43 z e r o f i l l = zeros ( n/4� s i z e ( dec2hex ( Dec ( i ) ) , 2 ) , 1 ) ’ ;
44 s t r =[ num2str ( z e r o f i l l ) dec2hex ( Dec ( i ) ) ] ;
45 FH( i , : ) = s t r ;
46 end ;
47
48 i f ( nargin = = 3 ) ,
49 i f ( strcmp ( o p t , ’ vhd l ’ ) = = 1 ) ,
50 %Make VHDL�f i l e named c r c g e n . vhd
51 echo o f f ;
52 Package = str2mat ( ’ package c r c p a c k i s ’ , . . .
53 [ ’ c o n s t a n t CRCDIM: i n t e g e r : = ’ , num2str ( n ) , ’ ; ’ ] , . . .
54 [ ’ c o n s t a n t DATA WIDTH: i n t e g e r : = ’ , num2str ( k ) , ’ ; ’ ] , . . .
55 ’ end c r c p a c k ; ’ ) ;
56 i f e x i s t ( ’ c r c g e n . vhd ’ ) , d e l e t e c r c g e n . vhd ; end ;
57 diary c r c g e n . vhd
58 disp ( Package )
59 type c r c g e n . t x t
60 disp ( S )
61 disp ( ’ end r t l ; ’ )
62 diary o f f ;
63 echo on ;
64 end ;
65 end ;

Fig. 7. The matlab file: crcgen.m

�; and to DATAWIDTH the desired processing parallelism (� value). The codes reported are ready to

generate the hardware for the CRC-16 where � � � � ��.

B. Matlab code

In Fig. 7 we report the Matlab code, named crcgen.m, used to directly produce the VHDL listing

of the desired CRC where only the logical equations of the CRC are present. This code is synthesized

much faster than the previous one. In order to work correctly, the crcgen.m file needs another file, named

crcgen.txt; this file contains the first 34 rows of crcgen.vhd.
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