X % *

Uni E ini ’ i P . N . . .
Fondo Soa allérgﬂ?ipeo Ministero _deI I_ Universitae deI_Ia Universita degli studi di
Ricerca Scientifica e Tecnologica Palermo

Dottorato di Ricercain Ingegneria Elettronica,
Informatica e delle Telecomunicazioni
X111 Ciclo

Unsupervised Learning on
Traditional and Distributed Systems

Autore dellatesi: Tutor:
Giuseppe Patane Chiar.mo Prof. Ing. Salvatore Cavalieri

Coordinatore del corso:
Chiar.mo Prof. Ing. Giovanni Mamola

Tesi cofinanziata dal Fondo Sociale Europeo
PROGRAMMA OPERATIVO MULTIREGIONALE 1994/99
n. 94002311
”Ricerca, Sviluppo Tecnologico ed Alta Formazione” Misura 1.1.
sottomisura Dottorati di Ricerca

Unsupervised Learning on Traditional and
Distributed Systems

Giuseppe Patane !

le-mail:gpatane@ai.unime.it, gpatane@libero.it

Contents

Introduction

1.1 Objective of the thesis
1.2 Clustering and Vector Quantization
1.3 Traditional algorithms for CA and VQ
1.4 Incremental algorithms for CA and VQ
1.5 Parallel Algorithms for CAand VQ
1.6 Organization of the thesis

Vector Quantization

2.1 Definition

2.2 Evaluation of the quantization error
2.2.1 Source whose statistical properties are known
2.2.2 Source whose statistical properties are unknown

2.3 Distortion measure
2.3.1 Mean quantization error measures

2.4 Optimal quantizer L
2.4.1 Nearest Neighbor Condition
2.4.2 Centroid Condition

Basic algorithms for hard and fuzzy CA/VQ

3.1 Generalized Lloyd Algorithm (GLA) or LBG
3.1.1 Codebook optimization
3.1.2 Initialization of the codebook

3.2 Considerations about the LBG algorithm

3.3 Fuzzy techniques L.

3.4 Considerations about hard and fuzzy techniques

The Enhanced LBG Algorithm

4.1 Introduction
4.2 General considerations
4.3 Distortion equalization and Utility

16
16
16
17
18
18
19
20
20
20

22
22
23
25
26
27
28

4.4 Detailed description of the ELBG block 34
4.4.1 Termination condition 35
4.4.2 Selectionof cells 36
4.4.3 Codeword shift and local rearrangements 36
4.4.4 Mean Quantization Error estimation 39
4.4.5 Confirmation or discarding of the SoCA 41

4.5 Considerations on the utility concept 41

4.6 ELBG overhead estimation 44

4.7 Results and comparisons 45
4.7.1 Qauntization of bi-dimensional cases 45
4.7.2 Image compression 50

4.8 Conclusions 53

The Enhanced LBG Implementation 55

5.1 Notation 95
5.1.1 Terminology 25
5.1.2 Matrices, arrays, constants and scalars 56
5.1.3 Matrix operators o7
5.1.4 Special matrices o7
5.1.5 A brief recall of the C notation 57

5.2 LBG implementation L. 57

5.3 ELBG implementation, 59
5.3.1 Rearrangement of the patterns. 59
5.3.2 The technique employed for the rearrangement 60
5.3.3 Access to cells whose patterns are fragmented 62
5.3.4 Other arrays needed for the execution of the ELBG block 64

5.4 Description of the procedures implemented 64
5.4.1 Voronoi partition calculation 66
5.4.2 ELBGblock, 66
5.4.3 Looking forcell S, 68
5.4.4 Description of a SOCA 69
5.4.5 Description of a SoC 72

5.5 Detailed description of the technique employed for the rear-
rangemento Lo Lo 75

Fully Automatic Clustering System (FACS) 81

6.1 Introduction 81

6.2 Considerations regarding ELBG 82

6.3 General Description 82

6.4 Smart Growingo 84

6.4.1 Discussion about the law regulating the decrease of the

target error Lo 87
6.5 Smart Reduction L. 88
6.6 Behaviour of FACS versus the number of iterations and ter-
mination condition Lo 90
6.7 Discussion about outliers 91
6.8 Results and comparisons 93
6.8.1 Introduction 93
6.8.2 Comparison with ELBG 94
6.8.3 Comparison with GNG and GNG-U 97
6.8.4 Comparison with FOSART 99
6.8.5 Comparison with the Competitive Agglomeration Al-
gorithm 99
6.8.6 Classification, 100
6.9 Conclusions 105
The MULTISOFT Machine 107
7.1 Introduction 107
7.2 Hardware organization 107
7.3 Managemento 109
7.4 Updating the system 112
Parallel Implementation of LBG and ELBG 113
8.1 Introduction 113
8.2 Parallelization of LBG and ELBG 113
8.2.1 PARLBG 114
8.2.2 PARELBG 118
83 Results. 121
8.4 Conclusions and future developments 122

PAUL: A Parallel Algorithm for Unsupervised Learning 123

9.1 Imtroduction 123
9.2 The algorithm o 124
9.2.1 General considerations 124
9.2.2 The essential points of the new algorithm 126
9.2.3 Determining the portions 128
9.2.4 Full procedure and inter-process communication 130
9.2.,5 Memory management L. 132
9.3 Results and comparisons with previous works 134
9.3.1 Compression of large-sized images 134

9.3.2 Comparison with PARLBG and PARELBG 137

9.3.3 Texture segmentation .
9.4 Conclusions and future works

10 Conclusions and further studies

11 Acknowledgments

139
142

143

145

List of Figures

1.1

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8
4.9

4.10

4.11
4.12
4.13
4.14
4.15

4.16

4.17
4.18

Clustering and Vector Quantization. (a) original data set; (b)
the pair of clusters identified by the CA algorithm; (c) VQ
with 4 codewords; (d) VQ with 8 codewords.

The LBG procedure
LBG codebook optimization
Splitting of a codewordo
Badly positioned centroids

ELBG codebook optimization
High-level flow-chart of the ELBG block
Detailed description of the ELBG block
Initial situation before the SoOCA
The cell S, and the hyperbox containing it
Codewords position immediately after the shift.
Codewords position and patterns distribution after the local

rearrangements L L L oL e e
The initial distribution of the utility indexes
The final distribution of the utility indexes when the LBG

algorithmisused L.
The final distribution of the utility indexes when the ELBG

algorithm isused,
o; versus the number of iterations in the LBG case
o, verus the number of iterations in the LBG case
o; verus the number of iterations in the ELBG case
o, verus the number of iterations in the ELBG case
Confidence intervals of the percentage time increase per iter-

ation with a confidence level of 99%
RMSE versus number of iterations. ELBG,,4 (solid line) and

LBGqp (dashed line)
Initial distribution L.
LBG final distribution

4.19
4.20
4.21
4.22
4.23
4.24
4.25

5.1

5.2

5.3
5.4

5.5
5.6

5.7
5.8
5.9

5.10
5.11
5.12
5.13
5.14

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

ELBG final distribution, ..
LBG final distribution
ELBG data set and codewords adjustment
Original image of Lena
LBG reconstructed image of Lena

ELBG reconstructed image of Lena
PSNR in dB versus the size of the codebook

An example with 10 patterns and 5 codewords. This is the
situation of the matrices P, IC and N PC' after the calculation
of the Voronoi partition.
The same matrices of Fig. 5.1 are reported after the rearrange-
ment proposed. We can see that all of the patterns belonging
to the same cell are stored in consecutive rows of P. The
vector IP is reported, too.
Example of rearrangement. L
Access to the patterns of the generic ith cell when they are,
for example, distributed among 4 fragments.

Situation of the data related to the cells i, [, p, before the SoCA.

Linking of the last [-pattern to the first i-pattern. This oper-

ation will be executed during the SoC.
Local rearrangement of the patterns.
Situation of the data related to the cells i, [, p, after the SOCA
Initial situation. Only the arrays and the matrices involved in

the sorting operation are reported.
Sorting: stack creation.o
Emptying of the stack (I).
Emptying of the stack (II).
Emptying of the stack (IIT).

Situation after the completion of the first sequence of operations.

A FACS-iteration
The two phases through which FACS develops
The Smart Growing phase
p versus the number of iterations
Detailed description of the insertion of the codewords
The Smart Reduction phase
Detailed description of the deletion of the codewords
Typical trend of N/ (it is N¢ normalized with respect to its

value after 200 iterations) and D (normalized with respect to

er) versus the number of iterations

60

60
61

63
70

73
I6)
76

77
78
79
79
79
80

83
83
85
86
87
88
89

6.9
6.10

6.11
6.12

6.13
6.14

7.1
7.2

8.1

8.2

8.3

9.1
9.2

9.3

Dataset with two clusters and one outlier 91
Prototypes of the Competitive Agglomeration Algorithm after

10 iterations 100
Codewords of FACS after 6 iterations 101
Two spirals: supervised classification. ey = 0.01; N =74 . . 103
Two spirals: supervised classification. ey = 0.001; No = 144 . 104

Two spirals: unsupervised classification. ey = 0.001; No = 143 105

The structural of the MULTISOFT machine 108
The FSM describing the OS organization of the MULTISOFT
machine 110
Task vs. Time diagram for PARLBG with £ = 16, Np =

16384, No = 128, N = 4. The scale of times is such that an
iteration is about 0.75s.o 115
Task vs. Time diagram for PARLBG with £ = 16, Np =
16384, No = 256, N = 16. The scale of times is such that an
iteration is about 0.60s. L., 116
Task vs. Time diagram for PARELBG with £ = 16, Np =
16384, N = 128, N = 4. The scale of times is such that an

iteration is is about 1.27s.o oL 120
Operations executed by the generic task 127
RMSE versus iteration number for ELBG (solid line) and

PAUL for N =20 (dotted line) 137

Estimate of the speed up for No=256 138

List of Tables

4.1
4.2
4.3
4.4
4.5
4.6

5.1

6.1
6.2
6.3
6.4

8.1

9.1
9.2
9.3

Execution times in seconds per iteration 44
Number of required iterations 45
Ty = Sx? — 31 .. e 46
Cantor’s distribution 47
ELBG and LBG-U comparison 50
Lee et al. and ELBG comparison 50
Matrix and vectors adopted to store the data. 65
ELBG performance 95
FACS performances 96
GNG performances L 98
FOSART comparison 99
Speed up (S) for PARLBG and PARELBG 119
Performance of PAUL with giraffe 135

Maximum estimated speed ups vs the number of codewords . 138
Comparison of the results related to PARLBG, PARELBG
and PAUL 139

Chapter 1

Introduction

1.1 Objective of the thesis

The aim of this thesis is the presentation of the work and the results related
to the study and the research performed during the triennium of my Ph.D.

In this context, several new algorithms for Cluster Analysis (CA, or clus-
tering) and Vector Quantization (VQ) [1-8], developed during this period,
will be shown.

In some cases, the techniques considered have to deal with the elabora-
tion of large amounts of data. In such circumstances, in order to increase
the available computing power, the utilization of techniques of parallel com-
puting can be an effective solution. For this reason, with the cooperation of
Prof. Marco Russo of the University of Messina (Italy), we have also worked
in the construction of the MULTISOFT Machine, a powerful farm of Per-
sonal Computers employed for the implementation of several algorithms. The
equipments constituting the MULTISOFT Machine have been mainly funded
by the Istituto Nazionale di Fisica Nucleare (INFN) - section of Catania and
also by Istituto Nazionale di Fisica della Materia (INFM)- section of Messina
and Centro di Calcolo Elettronico - Universita di Messina (CECUM).

In this introductory chapter, a brief description of the main themes faced
will be given. It begins with the definition of the objectives of CA and VQ
and the identification of several field of application. Afterwards, the new
techniques developed and presented in the thesis are classified inside one of
three families of algorithms for CA/VQ (traditional, incremental and paral-
lel). Such techniques are ELBG (belonging to the family of traditional algo-
rithms), FACS (among the incremental algorithms), PARLBG, PARELBG
and PAUL (in the family of parallel algorithms). Lastly, the organization of
the following chapters is described.

10

1.2 Clustering and Vector Quantization

CA is an important instrument in engineering and other scientific disciplines.
Its applications cover several fields such as pattern recognition [9-11], tex-
ture and image segmentation [12-14], boundary detection and surface ap-
proximation [15], magnetic resonance imaging [16,17], handwritten character
recognition [18], computer vision [14,19], information retrieval [20,21], data
mining [22] and machine learning [23].

According to Jain et al. [24], CA is the organization of a collection of
patterns (usually represented as a vector of measurements, or a point in mul-
tidimensional space) into clusters based on similarity. Intuitively, patterns
within a valid cluster are more similar to each other than they are to a pat-
tern belonging to a different cluster. Pattern proximity is usually measured
by a distance function defined on pairs of patterns.

In many applications regarding telecommunictions and other fields where
the compression and/or the transmission of data is involved, several tech-
niques based on algorithms for V(Q are often used [25-30]. Also in this case,
patterns are subdivided into groups (or cells), based on similarity measured
by a distance function [31-39]. Each cell is represented by a vector (called
codeword) approximating all of its elements. The set of the codewords is
called the codebook.

Figure 1.1: Clustering and Vector Quantization. (a) original data set; (b)
the pair of clusters identified by the CA algorithm; (¢) VQ with 4 codewords;
(d) VQ with 8 codewords.

11

In the wide scientific community using techniques for CA and/or VQ, a
widespread opinion is that they are different. CA is, generally, conceived
as the problem of identifying, with an unsupervised approach, the even-
tual clusters inside the multi-dimensional data set to be analyzed [9,40-44].
Differently, a V(@ algorithm is not intended on finding the clusters, but on
representing the data by a reduced number of elements that approximate the
original data set as well as possible. The concept is clearer with the help of
some figures. Let us consider, for example, the bi-dimensional patterns in
Fig.1.1(a). The aim of a CA algorithm is, generally, to automatically identify
the two clusters present, as shown in Fig. 1.1(b). A good algorithm can also
autonomously recognize the number of the clusters, even if it is not known
apriori and also in the presence of noise/outlier points. [14,45]. While, if we
apply a VQ technique to the same data set, the number of cells into which
the data have to be subdivided depends only on the desired degree of ap-
proximation. The higher the number of the codewords (and likewise of the
cells), the better the degree of approximation. Four and eight cells (with the
related codewords) are highlighted in Figs 1.1(c) and 1.1(d), respectively. It
is evident that, in the latter case, the degree of approximation is better than
in the former.

In spite of the differences outlined here, it is possible to demonstrate that,
in many cases, CA and VQ are, practically, equivalent [46-48]. Summarizing,
we can say that, often, from an operative point of view, the two approaches
roughly execute the same operations: grouping data into a certain number
of groups so that a loss (or error) function is minimized.

In the remainder of the thesis, we will use a symbology and terminology
typical of VQ. Besides, we will use also the term Unsupervised Learning (UL)
to indicate one or both of the two approaches.

After the introduction of a unified terminology for identifying both tech-
niques for CA and VQ, we present a distinction between two main cathegories
of algorithms for UL: they can be, generally, classified as hard (crisp) [32] or
soft (fuzzy) [49,50] techniques. The difference between these is mainly the
degree of membership of each vector to the clusters. During the construc-
tion of the codebook, in the case of the hard group, each vector belongs to
only one cluster with a unitary degree of membership, whereas, for the fuzzy
group, each vector can belong to several clusters with different degrees of
membership. All of the new algorithms presented in the thesis belong to the
hard family. However, at the end of chapter 3, the formulation for a typical
fuzzy problem is given, too. Besides, a brief comparison between the two
approaches is given.

12

1.3 Traditional algorithms for CA and VQ

With this name we define that family of iterative algorithms for CA/VQ
where, iteration by iteration, the values of the parameters to be optimized
vary, while their number is unchanged.

Inside this family, we can distinguish two main groups: K-means and
competitive learning. The clustering techniques belonging to the first scheme
try to minimize the average distortion through a suitable choice of codewords.
In the second case the codewords are obtained as a consequence of a competi-
tion process between them. Generalized Lloyd Algorithm (GLA), sometimes
called the Linde-Buzo-Gray (LBG) algorithm [32], belongs to the first group.
Recent developments in Neural Networks (NNs) architectures resulted in
several competitive learning algorithms [51] as, for example, the well known
Learning Vector Quantization (LVQ) and the Self-Organizing Feature Map
(SOFM) [52]. Other competitive learning clustering techniques are Fuzzy
LVQ (FLVQ) [49], Fuzzy Algorithms for LVQ (FALVQ) [53,54] Generalized
LVQ (GLVQ) [55], and GLVQ Fuzzy (GLVQ-F) [56].

The performance of several VQ algorithms depends on the choice of the
initial conditions and the configuration parameters. Pal et al. in [55] analyzed
the behaviour of the LVQ algorithm. They showed that a bad codebook
initialization implies very bad results. They made an attempt to resolve this
problem proposing GLVQ. But, in [57], Gonzalez et al. demonstrated that
the validity of GLVQ is restricted to a small domain of applications. They
showed that the performance of GLVQ can drastically deteriorate with a
uniform resizing of the data set. Successively, Karayiannis et al. [56] resolved
this drawback with a fuzzy modified version of GLV(Q they called GLVQ-F.
Karayiannis and Pai underline that fuzzy techniques are less sensitive than
others [53,58]. FALVQ [53] is effectively less sensitive, but, unfortunately, it
depends strongly on the right choice of several parameters required by the
algorithm itself. The same thing happens with the Fuzzy c-means (FCM)
technique [49]. Among hard techniques, some based on competitive learning
succeed in overcoming the previous problems. Chinrungrueng et al. [59]
proposed a new technique based on an optimal adaptive algorithm that is
less sensitive to the initial codebook and to the necessary parameters of the
algorithm itself. Using stochastic relaxation such as simulated annealing,
some authors proposed other types of VQ algorithm to get good codebooks
independently of the initial codewords [36].

In chapter 3, LBG [32], one of the most famous algorithms in literature,
will be described in detail. Practically, it is equivalent to the traditional hard
K-means clustering algorithm [46,60] and is the basis for the new techniques
proposed in this thesis. The first of such techniques is the Enhanced LBG

13

(ELBG), that will be presented in chapter 4. ELBG is designed to solve the
main problems affecting LBG and its main characteristics are:

e performances better than or equal to performances obtained by all of
the other algorithms considered;

e the final result is virtually independent of the initial conditions;
e 10 parameters have to be tuned manually (many fuzzy techniques do);
e fast convergence;

e low overhead with respect to LBG.

In chapter 5, the particular solutions adopted to keep the overhead low
(below 5 %,with respect to LBG) are presented. Particular prominence is
given to the tricks (regarding the logic structure of the algorithm, the data
structure and the technique for accessing the data) that allowed us to obtain
such a result.

1.4 Incremental algorithms for CA and VQ

In literature, several techniques for VQ/CA exist where, as the algorithm de-
velops, not only the values of the parameters to be optimized vary, but also
their number. For this reason, we define them incremental techniques. They
are used for problems of both Supervised Learning (SL) and Unsupervised
Learning (UL). Among them, we cite: Growing and Splitting Elastic Nets
(UL) [61], Incremental Radial Basis Functions Networks (SL) [62], Grow-
ing Cell Structures (GCS, SL and UL) [63], Growing Neural Gas (GNG, SL
and UL) [64,65] that take Neural Gas [66] (UL) as a starting point, Fuzzy
ARTMAP (SL) [67] that derives from the Adaptive Resonance Theory (ART)
of Grossberg [68], FOSART [48,69] and the Competitive Agglomeration Al-
gorithms [14,45].

In chapter 6, the Fully Automatic Clustering System (FACS) is presented.
It is a VQ/CA iterative algorithm whose aim is, given a data set and a target
error e, to find a codebook that approximates the input data set with an
error less than er. The cardinality of the codebook, such as the codewords
themselves, is a parameter that the system, in a completely automatic way,
identifies during its execution. At each iteration, FACS tries to improve
the setting of the existing codewords and, if necessary, some elements are
removed from or added to the codebook. In order to save on the number
of computations per iteration, greedy techniques, i.e. techniques of local

14

updating, are adopted. It is also demonstrated, from a heuristic point of
view, that the number of the codewords is very low and that the algorithm
quickly converges towards the final solution.

1.5 Parallel Algorithms for CA and VQ

In several CA/VQ applications, very complex problems, with a high number
of patterns and codewords, have to be considered. In such cases, both the
calculation time and the memory occupation can be a problem. For this
reason, the scientific community has tried to develop parallel algorithms for
UL that can benefit from the use of parallel or distributed resources as regards
both the computational power and the availability of physical memory.

Various hardware architectures have been employed such as, for example:
specialized architectures [70], massively parallel processors [71], transputers
[72,73] and networks of workstations [6, 74-78].

Because of the low cost involved in its realization, a solution that is
spreading very fast consists of clusters of Personal Computers (PCs) using
low-cost and high-availability hardware; they are also called commodity su-
percomputers. In spite of their low cost, such systems can be very useful
instruments in scientific computing. In fact, some of them are in the top-500
ranking of the most powerful supercomputers in the world [79]. This is a
very interesting prospective and, for this reason, also the IEEE has devoted
a section to such systems [80].

For implementing the new parallel CA/VQ techniques proposed in this
thesis, we built and used one of such systems, i.e. the MULTISOFT Machine,
a powerful farm of Personal Computers whose description, together with the
description of the particular techniques adopted for its administration, are
described in chatper 7.

As regards the parallel CA/V(Q algorithms developed, a preliminary study
about such techniques is reported in chapter 8. It consists of the parallel im-
plementation of LBG and ELBG, called PARLBG and PARELBG, respec-
tively. The aim of this preliminary study is to individuate which parts of LBG
and ELBG can easily be implemented on a system like the MULTISOFT
Machine and which ones have to be modified for improving the efficiency.
Starting from the results collected from PARLBG and PARELBG, a new
parallel algorithm has been developed. It is named PAUL and is presented
in chapter 9. PAUL derives from ELBG but some important modifications
have been performed in order to allow it to be efficiently implemented on the
MULTISOFT Machine. The results reported show that the modifications in-
troduced let PAUL obtain good results as regards both the final quantization

15

error and the speed up with respect to ELBG.

1.6 Organization of the thesis

The thesis is organized as follows

in Chapter 2 some basic definitions about VQ are given;

in Chapter 3 LBG and FCM are presented; besides, a brief comparison
between hard and fuzzy techniques is given.

in Chapter 4 ELBG and the related results are presented;

in Chapter 5 the particular tricks adopted for implementing efficiently
ELBG are presented;

in chapter 6 FACS and the related results are presented;

in chapter 7 the MULTISOFT Machine and the particular techniques
adopted for its adiministration are described;

in chapter 8 PARLBG, PARELBG and the related results are pre-
sented;

in chapter 9 PAUL and the related results are presented;

Manca ancora il capitolo delle conclusioni

Chapter 2

Vector Quantization

In this chapter, some important definitions about hard VQ are given; besides,
some necessary conditions for a quantizer to be said optimum, are given.

2.1 Definition

The objective of V(Q is the representation of a set of feature vectors x &
X C D¥by aset, Y = {y;,....¥n.}, of Ne reference vectors in D*. Usually,
D = R. Y is called codebook and its elements codewords. So, a vector
quantizer can be represented as a function:

qg: X —Y (2.1)

Starting from this VQ definition, it is possible to obtain a partition S of
the set X. It is constituted by the Ng subsets S; of X:

S;i={xeX:qx)=y;} i=1,...,Ng (2.2)
Generally, the subsets S; are called “cells”.

2.2 Evaluation of the quantization error

The aim of the VQ is to represent the whole set X by the reduced one Y.
When an element x € X is approximated by a codeword y;, we have a
quantization error because, generally, x # y;.

16

17

The average QE, calculated for the whole data set, is a useful instrument
to evaluate the effectiveness of a VQ. A VQ of X is better than another
(always of X)) when it has a lower average QE.

First of all, to establish how much x is different from y; we need the
definition of a distance (or distortion) operator d:

d:DF x DY — R (2.3)

The QE is the value assumed by d(x,y;), that is equivalent to d(x, ¢(x)).

Each quantizer is univocally determined after the codebook Y and the
partition & have been fixed. Mean QE (MQE) D({Y,S}) (or D(q)), also
called mean distortion, is defined [32]:

D{Y,8}) = D(q) = E{d(x,q(x))} =
= S P(xes) Bldlxy) Ixes) (24)

where the symbols P() and E{} mean respectively probability and expecta-
tion value.
This definition has general validity. There exist two distinct alternatives.

2.2.1 Source whose statistical properties are known

If X is a continuous set we can use the integral operator. So, we have:

E{d(x,y:) | x € §i} = /S d(x,y:)p(x | x € S;)dx (2.5)

P(x € S) :/ p(x)dx (2.6)

3

where we indicate with the symbol p() a probability distribution function.
Instead, if X is discrete we have to use the summation operator:

E{d(x,y:) | x € Si} = Z d(Xp,yi)P(xn | x € 5)) (2.7)

n:Xn€S;

18

P(xe S5)= > P(x,) (2.8)

n:Xn€ES;

2.2.2 Source whose statistical properties are unknown

We have a finite data set of Np elements. Generally, they are called input
vectors or learning patterns. If Np is great enough and the elements are well
distributed, i.e. they faithfully reproduce the source statistics, from eq. (2.4)
derives:

1
— > d(x,yi) fN;#0
. 1 — NZ n:Xn€S;
E{d(x,y;) |x € S;} = (2.9)
0 ifN; =0
N;
P(x € S;) = — (2.10)

Np

where N; is the number of patterns belonging to the ith cell.
By employing 2.9 and 2.10, 2.4 can be expressed, in a more compact form,
as follows:

D({Y,8}) = D(q) = E{d(x,¢(x))} =
= —ZDi (2.11)

where we indicate with D; the ¢th cell total distortion:

> d(xa,yi) (2.12)

n:Xn, €S;

2.3 Distortion measure

Various functions can be adopted as distance measures [32]. A very general
definition that comprises the most frequently used quadratic measures, when
D =R, is:

19

d(x,x') = (x —x') - W(x) - (x — x')* (2.13)

where the squared matrix W (x) must be symmetrical and positive definite.
From this definition, if W (x) is the k-dimensional identity matrix, the well
known square Euclidean distance (or Squared Error, SE) follows:

d(x,x') = Z(x, —z})* (2.14)

This measure is the most widely used in literature. While, if W (x) is a fixed
diagonal matrix, the Weighted Square Error (WSE) follows:

d(x,y) = > wi(z; — y:)” (2.15)

1=1

where w; (> 0) are the weights for each of the components.

2.3.1 Mean quantization error measures

The distortion measure permits the evaluation of the MQE. A very frequently
adopted criterion is the Mean Squared Error (MSE). Its formulation, for a
finite data set, is:

MSE = - 3" d(x,. (0x,) (2.16)

P p=1

where x,, is the pth learning pattern and d() is the SE. Sometimes, the square
root of the MSE (RMSE) is used.

Other times, Normalized Mean Squared Error (NMSE) is adopted. It
corresponds to the MSE divided by the MSE obtained with a codebook of
only one codeword, c, placed at the centroid® of the whole data set:

MSE

NLP E;])V:Pl d(x, — c)

NMSE = (2.17)

lgee section 2.4.2 for the definition of centroid

20

2.4 Optimal quantizer

A quantizer is optimum when, for each other quantizer with the same number
of codewords, a higher MQE is found. In mathematical terms, ¢* is optimum
if, for each other ¢, we have D(q*) < D(q).

In the following, the author will describe the two main conditions which,
from a mathematical point of view, are necessary so that a quantizer can
be said to be optimum. The two conditions are usually called the Nearest
Neighbour Condition (NNC) and the Centroid Condition (CC).

2.4.1 Nearest Neighbor Condition

Given a fixed codebook Y, the NNC consists in assigning to each input vector
the nearest codeword. So, we divide the input data set in the following
manner:

Si - {X € X: d(X7YZ) S d(X7yj)7
j=1,..No, j#i} i=1,..,No (2.18)

The sets S; just defined, constitute a partition of the input data set. This
is the “Voronoi Partition” [35] and is refered to with the symbol P(Y) =
{S1,-++,Sn.}. As P(Y) must be a partition, when an input vector has the
same distance from two or more codewords, it needs to choose a unique
manner to assign this vector to only one S;.

NNC permits us to obtain an optimal partition [32], i.e. for every partition
S of the input data set, it holds:

D({Y,8}) > DY, P(Y)}) (2.19)

2.4.2 Centroid Condition

Given a fixed partition S, the CC concerns the procedure to find the optimal
codebook.

Let us define centroid or center of gravity of a given set A C D* the
vector x(A) for which:

E{d(x,x(A4)) | x € A} = lrlrelbr}c E{d(x,u) |x € A} (2.20)

21

For example, if A C %2 and d is the squared Euclidean distance, then %(A)
coincides with the geometrical center of gravity of the set A. More in general,
when D =R, the number of elements of A is N4 and the squared euclidean
distance is adopted (2.14), we have:

1

x(A) = N

3 x (2.21)

X€EA

If we take the codebook X (S) constituted by the centroid of all the cells
of &:

X(S) = {x(S,);i=1,...,Nc} (2.22)

it is optimum [32], i.e. for every codebook Y, it holds:

D{Y,S8} > D({X(S),S}) (2.23)

Chapter 3

Basic algorithms for hard and
fuzzy CA/VQ

In this chapter two basic techniques for CA/VQ will be presented: the Gen-
eralized Lloyd Algorithm and the Fuzzy c-Means Algorithm (FCM). The
former belongs to the hard family, the latter to the fuzzy one. Besides, a
brief comparison between the hard and the fuzzy approach is given [2].

3.1 Generalized Lloyd Algorithm (GLA) or
LBG

In 1980 Linde, Buzo and Gray [32] proposed an improvement of the Lloyd’s
technique [81]. They extended Lloyd’s results from mono- to k-dimensional
cases. For this reason their algorithm is known as the Generalized Lloyd
Algorithm (GLA) or LBG from the initials of its authors.

In a few words, the LBG algorithm is a finite sequence of steps in which,
at every step, a new quantizer, with a total distortion less or equal to the
previous one, is produced.

Now, we will describe the LBG steps. We can distinguish two phases, as
shown in Fig. 3.1: the initialization of the codebook and its optimization.
In the initialization phase two methods are mainly used: random and by
splitting.

Firstly, we will describe the optimization step. It will simplify the LBG
explanation. In fact, several concepts necessary to describe this step are
useful for the initialization phase, too. In the following we will use these
symbols:

e m: iteration number;

22

Random
Initialization

Initialization by
Splitting

Codebook
Optimization

Figure 3.1: The LBG procedure

e Y,,: mth codebook;

e D,: MQE calculated at the end of the mth iteration.

3.1.1 Codebook optimization

23

Fig. 3.2 shows the high-level flow-chart. The codebook optimization starts
from an initial codebook and, after some iterations, generates a final code-

book with a distortion corresponding to a local minimum.

1. Initialization. The following values are fixed:

e N¢: number of codewords;

e ¢ > (: precision of the optimization process;

e Y;: initial codebook;

o X ={x;;j=1,..., Np}: learning patterns;

Further, the following assignments are made:

o m = 0;

e D | =+o0;

2. Partition calculation. Given the codebook Y;,, the partition P(Y;,)
is calculated according to the NNC (2.18).

Start

Initial codebook (Yo);

€

m=0;
D71: oo

>

-

‘

New nartition calculation

Sm: P (Ym)

v

Distortion (Dm)
calculation

Yes

<Eg

(D - Dm) / Dm

Final codebook (Ym);

End

New codebook calcul ation
Ym1= X (§,)

m=m+1

Figure 3.2: LBG codebook optimization

24

25

3. Termination condition check. The quantizer distortion (D, =
D({Y,,,P(Y,,)}) is calculated according to eq. (2.4). If | (D, —
D) | /Dy, < € then the optimization ends and Y}, is the final returned
codebook!.

4. New codebook calculation. Given the partition P(Y;,), the new
codebook is calculated according to the CC (2.22). In symbols:

Vit = X (P(V,)) (3.1)

After, the counter m is increased by one and the procedure follows from
step 2.

In [32] it is demonstrated that these steps assure that the series D,, is
not increasing and convergent.

3.1.2 Initialization of the codebook

The codebook initializiation is a very important task. In fact, a bad choice
of the initial codewords generally leads to a final quantizer with a high MQE.
Here, we describe the random initialization and the initialization by splitting.

¢ Random initialization. The initial codewords are randomly chosen
[55]. Generally they are chosen inside the convex hull of the input data
set.

e Initialization by splitting. This initialization requires that the num-
ber of codewords is a power of 2. The procedure starts from only
one codeword that, recursively, splits it in two distinct codewords [32].
More precisely, the generic mth step consists in the splitting of all vec-
tors obtained at the end of the previous step. After the splitting, an
optimization step is executed according to the method described in the
sub-section 3.1.1.

The splitting criterion is shown in Fig. 3.3. It starts from one codeword
y. It splits this vector into two close vectors y + e and y — e where e
is a fixed perturbation vector.

IThe termination condition depends both on the e value and the adopted distortion
measure. It is meaningless to specify only the e value because, with two different distortion
measures (as, for example, the MSE and the RMSE), the expected value of the number
of iterations can drastically change and, of course, the final mean distortion value. In this
thesis, each time we specify an e value, it refers to the RMSE. A typical range of values
for € is [0.001,0.1].

/

/

/

/ /
o mp
s Y /

/ /
/

/

/

[

/. Yyte
/

g,

Figure 3.3: Splitting of a codeword

26

These techniques are not the only ones present in literature. From the
others, we cite the maximum distance initialization [82].

3.2 Considerations about the LBG algorithm

The algorithm just presented usually finds a locally optimum quantizer. The
main problem is that, often, this optimum is very far from an acceptable

solution.

If we qualitatively comment the analytical expressions regarding the code-
word adjustment we could say that at each iteration codewords “move”
through contiguous regions. This implies that a bad initialization could lead
to the impossibility of finding a good quantizer.

oh

o0

[e]
Ske)

(©]
O
]

%o

O

0 %o

: centroid

O : learning pattern

0o©0©0
o Ooo
o O
0 5019 o
o
o4 O.o SIS
o O o ©
OOOOO
OoO ©0
052 0,0
0 ©° %
o
2
o 9@ o
o (o]
050
OOO
©o
: centroid

O learning pattern

@

(b)

Figure 3.4: Badly positioned centroids

27

For example, let us examine Fig. 3.4. On the left side, part (a), we see
the codeword number 4. According to the (2.18), it will always generate an
empty cell because all the elements of the data set are nearer to the other
codewords. So, following the steps of the traditional LBG, it cannot move
and will never represent any element. For this reason we can say it is useless.
The same authors of the LBG [32] proposed some solutions to this problem
such as the assigning of the codeword to a non-empty cell.

But we think there is another problem that strongly limits the classical
LBG and its solution appears a difficult task. Let us look at the right side,
part (b), of Fig. 3.4. This configuration shows two clusters and three code-
words. In the little cluster there are two codewords whereas, in the other,
only one. The elements in the data set in the smaller cluster are all well
approximated by the two related codewords. Instead, a lot of elements in
the larger one are badly approximated by the related codeword. For this
geometrical distribuition, it would be preferable that two codewords were
inside the big cluster and only one in the other, but the LBG optimization
algorithm, in this situation, does not permit the migration of a codeword
from the little cluster to the big one. This is a great limitation.

To improve the performance of the LBG algorithm, we think that it is
crucial to develop a criterion that identifies these situations. Further, it must
be able to find which codewords it is better to move and where they have to
be placed, without any contiguity limitation.

Some authors already introduced some interesting criterions [38].

3.3 Fuzzy techniques

The main difference between hard and fuzzy techniques is that, during the
construction of the codebook, each vector can belong to several clusters with
different degrees of membership or not. They are a generalization of hard
ones.

In fuzzy techniques, the objective is the minimization of a functional
similar to (2.4), but containing the membership degrees, too. For example,
in fuzzy ¢-Means (FCM) [49], it is:

min {me, V,X) = 305 ()™ s — yini} (32)

UY) h=1i=1

where:

e U = {uy,} is the matrix with the fuzzy labels. Its generic element u;,

28

is the degree of membership of the h-th pattern to the i-th class. The
matrix U must be arrayed in such a way that each column of U is a
fuzzy label, i.e.:

wp € 00,1] Vi,h ENCuy =1 Vh

o Y ={y/yo, s yno |Yi ERP i =1,2,..., N¢} is the codebook;

e ||x||a = VxTAx; A is a positive definite p X p matrix. If A is the
identical matrix (A = I) the expression ||x|| 4 is the Euclidean distance.

The functional (3.2) is minimized almost in the same manner used in the
LBG. A complete description can be found in [49,50]. The main problem to
solve in FCM is the right choice of m. In [49] the interval [1.1, 5] is suggested.

In [83] the algorithm is analyzed for m — 1 and m — co. While complete
formulas can be found in [49], here we remind that, for m — 1, the algorithm
becomes a hard K-means one. While, for m — o0, all of the codewords move
towards the grand mean (i.e. the global mean value) of the input vectors.

The objective function of FLVQ [49] is similar to (3.2) and, also in this
case, the result is dependent on the choice of m. If we consider FALVQ
[53,54], the parameters to choose are more than one and, according to their
choices, the algorithm could also not be convergent.

As shown in [49,53], when the configuration parameters are well chosen,
these techniques are less sensitive to initial conditions than hard ones.

3.4 Considerations about hard and fuzzy tech-
niques

As regards the dependence from the initial conditions, the behavior of fuzzy
techniques in case of badly positioned codewords (see Fig. 3.4) is different
than hard ones. In fact, each pattern attracts all of the codewords and not
only the nearest of all. The degree of attraction is greater for the nearest
codewords and lower for the farthest ones. In this way, all of the codewords
can be attracted by all of the patterns thus allowing migrations that are not
allowed in hard techniques. However, we must remember that the perfor-
mances depend strongly on the choice of the configuration parameters. For
example, in [50] it is shown that both the results and the number of iterations
required to obtain a good result change when m varies.

We have also to consider that in several applications, such as classification
149,50, 53,54] or image compression [53], the codebook is obtained by fuzzy

29

algorithms but the input patterns are classified or approximated according to
the nearest neighbor condition (section 2.4.1), i.e. in a crisp manner, where
each pattern belongs to one and only one cell.

Chapter 4

The Enhanced LBG Algorithm

4.1 Introduction

In this chapter we present the new algorithm we called Enhanced LBG
(ELBG) [1,3]. It belongs to the hard and K-means V(Q groups and de-
rives directly from the simpler LBG. The basic idea we developed is the
concept of utility of a codeword. Even if some authors already introduced
the utility [38], our definition, meaning and computational complexity are
totally different. The utility index we use is a powerful instrument to over-
come some of the greatest drawbacks of the LBG and other VQ algorithms.
As we have already stated, one of the main problems is that, in the case
of a bad choice of the initial codebook, generally, the results are not good.
The utility allows a good identification of these situations. Further, it per-
mits the recognition of the badly positioned codewords and gives us useful
indications about regions where they should be placed. This work, like [59],
has been inspired by Gersho’s theorem [84]. This theorem states that, if
some hypothesis are verified, the distortion associated to each codeword is
the same as the others in an optimal codebook. In the same way, ELBG
looks for a codebook to which each codeword contributes in the same man-
ner, i.e. the utility of all the codewords is the same. Basically, our algorithm
is an LBG in which some further steps have been added. Starting from some
mathematical properties of the utility index and other considerations, we de-
veloped some sub-optimal operations on which ELBG is based. We adopted
these sub-optimal operations in order to not increase the final overhead of
the ELBG too much.

The experimental results we have reached show that ELBG is able to find
better codebooks than previous works and the computational complexity is
virtually the same as the simpler LBG algorithm.

30

31

The chapter is organized as follows:
e in Sections 4.2-4.6 the algorithm is described;

e in Section 4.7 results and comparisons with other algorithms are pre-
sented;

e lastly, Section 4.8 contains the author’s conclusions.

4.2 General considerations

The algorithm we propose is an attempt to find a solution for the two draw-
backs of the classical LBG we discussed in section 3.2. We will formally
introduce a new quantity that we call the utility of a codeword. It allows
us to deal with both drawbacks described in the previous section from a
unique point of view. As we will explain in the next sections, the terms
utility of a codeword and utility of a cell have the same meaning. In the
following, we will suppose that we are dealing with a finite input data set
X ={xs,..., XN, }-

Fig. 4.1 shows the high-level flow-chart of the ELBG algorithm. The only
difference between LBG and ELBG is the ELBG block. The functionalities
of the ELBG block are summarized in Fig 4.2. First of all, there is the utility
evaluation. After the evaluation of the utilities of the codewords, we identify
the cells with a low utility. This information is very useful for the next step:
the smart shifting of codewords. We try to shift all the low-utility codewords
near to the ones with high utility. Each attempt leading to a lower MQE
is confirmed. The aim of these operations is to obtain the equalization of
the total distorsions related to cells (D;, see eq. (2.12)), as one of Gersho’s
theorems suggests [33,84]. As we will see in detail in the next sections, this
allows us to overcome the drawbacks we exposed in section 3.2.

Here, we only say that the heart of the ELBG block is the execution of
several Shifting of Codewords Attempts (SOCA’s). When a SoCA produces
a decrease in the MQE, then the SoCA is confirmed. In this case we say that
a Shift of Codeword (SoC) is executed. If we do not have any MQE decrease,
the shift is discarded.

Besides, we wish to underline that all the additional steps we introduced
in the LBG algorithm to obtain the ELBG are very efficient. The term “effi-
cient” refers to a low computational complexity operation. So, the overhead
we introduced in the original LBG is negligible, as will be shown in section
4.6.

32

Start

Initial codebook (Yo);
€

m=0;
D_y=+ee

New partition calculation
Sm: P (Ym)

v

Digtortion (Dm)
calculation

(Dm-1 - Dm)/ Dm
<eg

EL BG block
Final codebook (Ym); i
New codebook calculation
Yme1 = X (S:n)
End
m=m+1

Figure 4.1: ELBG codebook optimization

33

ELBG block
A 4

Utility evaluation

| |
| |
| |
| |
| |
| |
| |
| |
| |
I A\ 4 |
I . . . |
| | dentfication of cellswith !
| [13 41} 1 I
! low” utility !
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

v

Attempts to shift codewords
with “low” utility near to
codewords with high utility

Figure 4.2: High-level flow-chart of the ELBG block

4.3 Distortion equalization and Utility

The idea of the utility was suggested to us by one of Gersho’s theorems [33]
where he explained his partial distortion theorem [84] saying: “Fach cell
makes an equal contribution to the total distortion in optimal vector quantiza-
tion with high resolution”. Gersho’s theorem is true when certain conditions
are verified (according to [84], a high resolution quantizer has a number of
codewords tending to infinite). But, in [59], experimental results proved that
it maintains a certain validity also when the codebook has a finite number of
elements. So, we introduce a new step inside the LBG to pursue the equal-
ization of the total distortions of the cells (D;). In this context, we define the
“utility index” (U;) of the ith cell as the value of D; normalized with respect
to its mean value (Dpean). In formal terms, we have:

Dmean = X ZDZ (41)

34

U, = i=1,.. Ne (4.2)

In the following, we will use both the term utility index of a cell and
utility index of a codeword. Substantially, there is no difference between the
two terms. In fact, we can use equation (4.2) only if a cell is considered
together with the related codeword and vice versa. We will often use only
the shorter term “utility”.

According to the definition just given, the equalization of the distorsions
is equivalent to the equalization of the utilities.

Our idea is to obtain the desired equalization by joining, for each SoCA,
a low-utility (lower than 1) cell with a cell adjacent to it, hoping to obtain
a bigger cell whose utility is closer to 1 than before. At the same time, we
split a high-utility (higher than 1) cell into two smaller ones whose utilities,
are, if possible, closer to 1 than the big cell. We can say that this operation
is equivalent to move the low-utility codeword inside the high-utility cell. If
we refer to Fig. 3.4. (a) we see that the utility of cell 4 (U,) is 0, that U, and
U; are lower than 1 and that U, is greater then 1. These values, according to
the possibility illustrated above, suggest moving the 4th codeword near the
Ist codeword. Instead, if we see Fig. 3.4. (b) we should move codeword 2
or 3 near the 1st one. This is a “smart” manner of shifting codewords that
allows their migration through non-contiguous regions.

Fig. 4.8 shows a typical distribution of the utility indexes when an initial
random codebook is given. It is a very widespread “bell”. The shifting of
the codewords on the left side of the figure near to the ones on the right side
produces an adjustment of the original bell into a narrow one, as is shown
in Fig. 4.10. However, we must remember that our primary objective is the
MQE minimization. So, we execute a SoC only when we are sure that it
produces a mean distortion decrease. The way we execute a SoC and the
evaluation of its effect on the QE are the argument of the next subsections.

The considerations exposed in this sub-section allowed us to develop an
objective criterion to select the codewords to be shifted and the cells where
they have to be placed, as will be explained in the next sub-sections.

4.4 Detailed description of the ELBG block

Fig. 4.3 details the previous Fig. 4.2 in which the main steps of the ELBG
block are illustrated.

35

The ELBG consists in the execution of a certain number of SoCA’s. In
what follows, we will describe in detail a SOCA. We will use Figs. 4.4, 4.5,
4.6, 4.7. They represent a SOCA for a simple bi-dimensional problem.

(START)

Y

C.l)
Isthere at |east one
not-yet considered-
cell whose utility is
less than 17

NO

YES END

|

C.2) Selection of the cellsi
and pwhereU;<land U >1

A 4

C.3) Codeword shift attempt
and local rearrangements

!

C.4) MQE estimation

A 4

C.5) if MQE islowered,
then confirm the shift

Figure 4.3: Detailed description of the ELBG block

4.4.1 Termination condition

The first condition in the upper part of Fig. 4.3 regards the termination of
the whole ELBG block. We check to see if at least one cell has a utility index
lower than 1 and it has not been involved in previous shifts. If no cell exists,

36

then the algorithm ends. Otherwise the next steps regarding a new SoCA
follow.

4.4.2 Selection of cells

This step is necessary to recognize all the cells involved in the current SoCA.
We look for two different cells.

e One cell must have a utility index less than 1. We will refer to it as
the ith cell.

e One cell must have a utility index greater than 1. We will indicate it
as the pth cell.

The ith cell, S;, is searched for in a sequential manner. Instead, the pth
cell is looked for in a stochastic way. The method adopted sounds like the
roulette wheel selection in genetic algorithms [85]. Practically, we choose a
cell with a probability P, proportional to its utility value. In mathematical
terms:

P Up

=—Fr 4.3
P Zh:Uh>1 Uh ()

4.4.3 Codeword shift and local rearrangements

This step consists in a SoCA. We try to shift the codeword y; near y,, i.e.
the codewords related to the cells S; and S, respectively. This situation is
illustrated in Fig. 4.4 for our bi-dimensional problem.

SO \
. O O O
/OQ OOO OO ~ Sp
S0P 080 g oo
00 , e .
o o O 00,5000 g
S 0 @0 /000 © 00 7
4 %\Q\ © Qo000 0odP 000/
O O™ 000 0/
0 o o/
o Q-

\

’
/
-
\
O
\
\
\

Figure 4.4: Initial situation before the SoCA

37

A similar shift produces a new codebook. In the traditional LBG, after
a new codebook generation, the calculation of the partition satisfying the
NNC, i.e. the Voronoi partition, follows. As we have several SoCA’s and
each of them must be evaluated, we would have to introduce a very heavy
overhead into the classical LBG!. Our aim is to improve the LBG with a low
overhead, so we avoid recalculating the Voronoi partition.

To simplify the overall procedure and, of course, to drastically reduce
the overhead, we suppose that, after the shift, in the new partition only the
patterns related to S; and S, will be subject to change. In our algorithm,
these patterns will be the only ones with related codewords different from
before. We shift y; near y,. As y, is, generally, localized at the center of
Sp, we think that it is better to move y,, too. So, it is possible to distribute
the two codewords inside the S, cell in a better way. The solution we have
found is very simple. It does not assure a better distribution, but we made
a lot of experimental trials that have shown its validity.

1

8,74 Yo

Yi

8,/4

Figure 4.5: The cell S, and the hyperbox containing it

As a finite number of k-dimensional vectors forms the input data set, the
generic pth cell is contained in the k-dimensional hyperbox I;:

Ip = [-'L'lm;le] X [l‘zm,]}QM] X ... X [ka;xk:M] (44)

'We must remember that the most onerous step in the LBG algorithm is precisely the
Voronoi partition calculation.

38

O
0°2 o 0 0 95 0%
//\‘\\O .OO /OQOOOQO p O/
{ om0 Bgp0%° 00007
\\\OO O \\\\ \\\ |OOOOO O/
S \ O @) 7 N\ o o_ 7/
\\\ O O \ O @) O/I
\\\\ \‘\ O ’Q’/ =
o \‘Q, g

Figure 4.6: Codewords position immediately after the shift

where xp, and x,\ are respectively the minimum and maximum value as-
sumed by the hth dimension of all patterns belonging to S,. We place y; and
yp on the principal diagonal of I,. We divide the diagonal in three parts.
Two are equal to the half of the central one. We place the two codewords at
the ends of the central part as is illustrated in Figs. 4.5 and 4.6.

o]

of
O
QO
0 6O
589
5 80
08~

0&0
RONG)

@)
o<

- g0
O o

-
Vos"
O
Coo;
00 ¢

Figure 4.7: Codewords position and patterns distribution after the local
rearrangements

Afterwards, y; and y, are adjusted with a local traditional LBG with a high
value for € (typically 0.1+ 0.3), so only a very few iterations (one or two) are
generally executed. The codebook to be optimized contains only y; and y,
and the input data set is S,. The result of this optimization step is two new
codewords (y} and y}) and two new cells (S} and S}). The new codewords
and the new cells substitute the corresponding ones in the old codebook and
partition respectively. We show this in the right part of Fig. 4.7.

After the patterns belonging to S, have been rearranged, we still have to
rearrange the patterns of S; because the related codeword has been moved
away. We must again remember that the optimum way to assign these vec-
tors is to calculate the Voronoi partition of the whole data set. As we want

39

to avoid this operation, we adopt another sub-optimal low-complexity oper-
ation.

As shown in Fig. 4.7, we assign all vectors in S; to S, y; being the nearest
codeword to y;. Afterwards, y; is substituted by the centroid y; of the new
set. In symbols:

{ Sl :SZUSZ'; (45)

y; = x(5)

Generally, this solution is sub-optimal because in the Voronoi partition, the
S; vectors could distribute themselves among more cells.

4.4.4 Mean Quantization Error estimation

Now we have to understand if the SOCA produces a lowering of the MQE. If
it does, then it is confirmed, i.e. it turns into a SoC. Otherwise the SoCA is
rejected.

For an exact evaluation of the MQE, the calculation of the Voronoi par-
tition is necessary. But, as we have already stated, this calculation will
introduce a very high overhead. For this reason we employ a sub-optimal,
but efficient solution again. It consists in the overestimation of the MQE we
would obtain by finding the Voronoi partition. If the overestimated MQE is
lower than the previous MQE (i.e the MQE we had before the SoCA) then
we are sure that the shift produces an actual decrease in the final MQE. None
of these operations require the calculation of the Voronoi partition. Thanks
to this trick, the overhead introduced by the ELBG block is negligible in
comparison to the time required by the standard LBG.

Focusing our attention only on the old three cells S;, S, S;, and the three
new ones S;, S;, Sj, we can understand if the SoOCA must be confirmed.

Let us remember that Y and § are the codebook and the partition before
the shift. Y’ and &' are the codebook and the partition we have after the
shift. Y is obtained by replacing in Y the three codewords y;, y,, and y;
with yi, y;,, and y; respectively. In the same way, by substituting the related
cells in 8, we obtain §'.

The following symbols will be used:

e D,y is the MQE before the shift:

Dold = D({Yv S}) (46)

40

e D, is the MQE we would have by considering Y’ and the Voronoi
partition deriving from it :

Dnew = D{Y', P(Y')}) (4.7)

e d,4 is the total distortion of the three considered cells before the shift:

dota = Di + Dy + D, (4.8)

® d,.., 1s the total distortion of the three considered cells after the shift:

new = D; + Dy + D, (4.9)

If we calculated the Voronoi partition deriving from the new codebook
Y”’, we would understand if the SoCA is useful or not, i.e. if D, < Dyq or
not.

Now, we will prove that, if we calculate only d,,c,, and dy;q and dye < doig,
then we are sure that D,,.,, < D,4. Our condition is only sufficient. For this
reason we say that our algorithm is sub-optimal.

Let us suppose we have performed a SoCA as explained in the current
and in the previous sections. Let us suppose that all the hypothesis made in
these sections are true. We want to demonstrate that:

if dnew S dolda then Dnew S Dold

Let us indicate deonst = (NpDoig — doig). The quantity deons: is the total
distortion derived from the whole codebook and codewords eliminating the
codewords and the patterns related to the ¢th, pth and [th cells. It remains
constant from the old codebook to the new one. So:

D({Y",8"}) = = (dnew + deonst) < 577 (dotd + deonst) = Dota-
But, from the NNC, we know that:
DY, P(Y"}) <=D{Y',S'}) VS'.
So we obtain:
Drew = DEY", P(Y')}) < Doig

as we wished to demonstrate.

41

4.4.5 Confirmation or discarding of the SoCA

If dyyew < dyg the SoCA is confirmed. Therefore, we have a SoC. Otherwise
the attempt is discarded. After, we try to effect another SoCA, i.e. we go
back to point 4.4.1.

We can execute any number of consecutive SoC’s when there is a decrease
in the mean distortion. The final codebook and the related Voronoi partition
introduce a mean distortion that is less than that we have obtained before
any shift.

This approximation is, in the author’s opinion, a good compromise be-
tween computational effort and precision. The value of the idea is confirmed
by the experiments that we will illustrate in the next sections.

4.5 Considerations on the utility concept

In this Section we will discuss the utility concept. Starting from a case study
we will examine the utility behaviour in the LBG case and in the ELBG.
We took the well-known Lena’s image [86] of 512 x 512 pixels of 256 grey
levels. The image was divided into 4 x 4 blocks and the resulting 16384
16-dimensional vectors were used as a data set. We fixed No = 256.

250 =

200

N
o
S

Number of cells

=
o
=}

50

.
0 10 20 30 40 50 60 70 80
Utility index

Figure 4.8: The initial distribution of the utility indexes

We generated a random initial codebook. In Fig. 4.8 the very wide and
strongly non-symmetrical initial distribution of the utility indexes is shown.
The related RMSE is 201.

42

w
S

Number of cells
=
S
3
Number of cells
= N n
@ S a

o
S}

o

Lo 1 nllll .

8 10 12 14 16 18 0 0.5 1 15 3
Utility index Utility index

Figure 4.9: The final distribution Figure 4.10: The final distribu-
of the utility indexes when the tion of the utility indexes when the
LBG algorithm is used ELBG algorithm is used

Successively, we used the standard LBG algorithm. It required 18 itera-
tions. The final RMSE was 33.4. The ELBG with the same initial codebook
required only 11 iterations and the final RMSE was 25.8. In both algorithms
we fixed € = 0.001.

In Figs. 4.9 and 4.10 the final distributions of the utility indexes are
shown. In the LBG case we find a lot of codewords with a utility of almost
0 and some with very high utility values, up to 16 <+ 18. In the other case
we have a more compact distribution. All utility values are comprised in the
real interval [0, 3].

In the following, we will not use the concept of standard deviation because
we are dealing with several non symmetrical distributions. We prefer to use
the concepts of left and right standard deviations (o, 0,) [87]. They are
obtained calculating the standard deviation only of the values below and
above the mean value respectively.

Figs. 4.11 and 4.12 show both o0, and o, versus the number of iterations
in the LBG case. o; is almost constant to 1 for all the iterations whereas o,
decreases up to 3.72. It reaches about 90% of its total decrease in 4 iterations
and slowly continue to decreases up to the final iteration.

Figs. 4.13 and 4.14 show both the standard deviations versus the number
of iterations in the ELBG case. o, decreases in only 3 iterations to almost
its final value of about 0.41. o, decreases up to 0.43 in only 3 iterations. So,
ELBG effectively succeeds in shifting codewords with very low utility indexes
near to codewords with very high utility indexes. Further, it “equalizes” the
utility distribution. In fact, we have the total deviation equal to 0.42, i.e.
0O X 0] X 0.

43

1 35— : : : : : : :
0.9F
30
0.8
0.7 2
c0.('3 £20
2 215
0.4
03 10
0.2 1
5
0.1 4
o 2 5 5 10 12 1 1 18 S 2 s s 10 12 14 16 18
Iteration number Iteration number
Figure 4.11: o; versus the number Figure 4.12: o, verus the number
of iterations in the LBG case of iterations in the LBG case
1 . . . T T T T T T 35
30 B
25 B
g £20
o, s
& 315
03 1 10
0.2F 4
5
0.1 B
O1 2 3 4 é 9 10 11 0 1‘1 5 é ‘7 8 E; 1‘0 11
Iteration number Iteration number
Figure 4.13: o; verus the number Figure 4.14: o, verus the number

of iterations in the ELBG case of iterations in the ELBG case

44

4.6 ELBG overhead estimation

The aim of this Section is to evaluate the ELBG overhead with respect to
classical LBG.

We used the same data set of the previous section and, in all tests per-
formed, we fixed ¢ = 0.001. As the performance of our method depends on
the number of codewords, we analyzed several cases ranging from No = 128
to 1024.

For each dimension of the codebook, we randomly generated 15 initial
codebooks. Then, for each codebook a LBG and an ELBG quantization were
performed. So, all the reported results are the average of the 15 runs. All
runs were executed on a pentium 100MHz based machine and are expressed
in seconds.

LBG ELBG
128 | 11.3 12.1
256 | 22.8 23.7
512 | 45.3 46.8
1024 | 91.1 943

Table 4.1: Execution times in seconds per iteration

Table 4.1 reports the mean time required for LBG and ELBG. This mean
does not comprise the initialization phases.

8

7L

Overload per iteration
@ o
T

N
T

3l

2 I . I . I I . I .
100 200 300 400 500 600 700 800 900 1000 1100
Number of codewords

Figure 4.15: Confidence intervals of the percentage time increase per iteration
with a confidence level of 99%

In Fig. 4.15 we report the confidence intervals of the percentage time
increase per iteration with a confidence level of 99%. This figure shows that

45

the overhead we have introduced in the LBG algorithm is very low. Further,
when the number of codewords increases, the overhead decreases below 5%.

N¢ | LBGug LBGg, ELBGrg ELBGg
128 23.6 13.4 11.4 11.2
256 19.4 12.0 11.0 10.4
512 19.2 10.8 10.8 10.6
1024 19.8 10.0 15.4 11.8

Table 4.2: Number of required iterations

Table 4.2 shows the average number (5 runs) of iterations required re-
spectively for the LBG with random initialization (LBG,,q), the LBG with
initialization by splitting (LBGgp), the ELBG with random initialization
(ELBGypn4) and the ELBG with initialization by splitting (LBGgpi). The re-
sults reported show that the LBG,.q is the worst of all. Up to a codebook
of 512 codewords, both the ELBG,q and the ELBGgp, require less iterations
than the LBGg,. The results we obtain for a codebook with a size of 1024
seems to show that the ELBG works worse than the LBG. In effect, more
iterations are required. But the reason is that the LBG stops in local min-
imums. Viceversa, the ELBG succeeds in escaping from these minimums
better, and consequently, it requires more iterations.

Fig. 4.16 shows the result we obtain in the case of a codebook with 1024
codewords. The dashed line refers to the LBGgp, whereas the other to the
ELBG;.q. After only three iterations the ELBG reaches a RMSE equal to
about 20.0. When the LBG stops it reaches a RMSE equal to about 20.7.
Of course the LBG,,q performs worse.

4.7 Results and comparisons

In this Section we will examine the ELBG performance with several appli-
cation examples ranging from simple bidimensional quantization approaches
to complex image compression tasks. We will compare our results with the
most recent results we have found in literature. Also in these examples we
fixed € = 0.001.

4.7.1 Qauntization of bi-dimensional cases

In [59] the authors present a new technique and examine several bidimen-
sional cases. We examined two of these.

46

RMSE

Iteration number

Figure 4.16: RMSE versus number of iterations. ELBG,,q (solid line) and
LBGqp (dashed line)

Polynomial case: as first case study we have taken 2000 patterns as
follows:

x1 € [-0.5,0.5]
4.1
{x2:8x?—3x1 (4.10)
where the z; values are uniformly spaced in their interval. We fixed N = 16.
To improve statistical accuracy, we have averaged the simulation results over
5 runs with different initial codebooks.

| ELBGyng ELBGgp LBGraa LBGgy [59]
Iter. ‘ 10.4 10.6 14.8 7.8

NMSE | 1.1E-2 1.1E-2 29E-2 1.1E-2 ~11E-2

Table 4.3: xo = 82 — 31,

We have obtained the results reported in Table 4.3. All methods substan-
tially reach the same result except the LBG with random initialization.

Fig. 4.17 shows an initial distribution. Figs. 4.18 and 4.19 show the
results obtained respectively with the LBG and ELBG algorithms starting
from this initial distribution. The LBG leaves half of the codewords un-
used, and, for this reason, it gives the worst performance of all, whereas the

47

0.5

0.4

0.2

0.1p

Figure 4.17: Initial distribution

ELBG uses all 16 codewords. In this case the differences between the various
methods are marginal because all methods (except the LBG with random
initialization), probably, find the global minimum.

Cantor distribution: as second bidimensional case, we examined the
three-level Cantor distribution [59]. Even in this case we considered 2000
patterns and 16 codewords. Our results, averaged on 5 runs, are reported in
Table 4.4

| ELBGyyq ELBGy, LBGra LBGgy [59]
Tter. 5.2 16 5.8 16
NMSE | 12E-2 12E2 32E2 12E2 ~12E-2

Table 4.4: Cantor’s distribution

Fig. 4.20 shows the typical final situation when the LBG algorithm is
used. In this Figure the points represent the data set whereas the circles are
the codewords. Fig. 4.21 shows one of the five runs we needed to obtain the
average reported in Table 4.4. We can see that all codewords are nearly all
well positioned in only three iterations and in the next one the process ends.

Also in this case the differences between the various methods are marginal
because, probably, all methods (except the LBG with random initialization)
find the global minimum or a value very near to it.

Fritzke comparison: in [38] another bidimensional data-set was used
by Fritzke to compare his method, called LBG-U, with the standard LBG.

0.5

0.41 ° 0.4r
o3t ©] 03l
0.2t 02
0.1} . 0.1r
o o .
(e}

0 ° ® o
-0.1 ° o. -0.1
~0.2 ° -0.2

o]
-0.3 -03
o

-0.4 -0.4r
o o

~05 . -0.5
-0.5 0 0.5 -0.5

x1

Figure 4.18: LBG final distribu-

tion tion

05 5

o]
0.4 o

] o

0.3f
0.2 o o
0.1f

o

¥ o0

-0.1
-0.2 ° ° °

48

0.5

0.5

Figure 4.19: ELBG final distribu-

-0.5

0.5

Figure 4.20: LBG final distribution

The experiments were done on a set of 500 learning patterns® generated by
a Gaussian mixture distribution. The author performed several runs with
N¢ ranging from 10 to 100. For all codebook sizes the mean improvement of
Fritzke’s algorithm was higher than 10% with respect to the LBG. But the
LBG-U requires a lot of iterations. This number goes from three to seven
times that of the LBG method.

We have performed the same tests and averaged the results of 10 runs.
In Table 4.5 we have reported our results and the previous ones. It is evi-

2available from ftp://ftp.neuroinformatik.ruhr-uni-bochum.de/pub/data/LBG-U.dat

0.5

04f.

0.3

0.2r

0.11

-0.5

49

Step #2

0.5

-0.5

0.5

-0.5=

0.4f.

0.3

0.2

-0.5-

0.5

0 0.5
x1

Step #4

-0.5

Step #1
o
o
o
o
0
x1
Step #3
o
o
o
o
0
x1

Figure 4.21: ELBG data

-0.5-

0.5 -0.5

set and codewords

adjustment

50

N¢ LBG-U ELBG

RMSE +o ‘ Tter. ‘ RMSE +o ‘ Tter.
10 | 0.0453 £ 12.5% | 31.5 + 42.7% | 0.0433 £+ 0.20% | 7.4 + 28.0%
100 ‘ 0.0125 £ 2.1% | 57.7 £ 22.1% | 0.0123 £+ 0.41% | 10.6 4+ 10.8%

Table 4.5: ELBG and LBG-U comparison

dent that ELBG outperforms LBG-U both as regards the final error and the
number of required iterations. We need about 20% of the iterations required
with the LBG-U method.

4.7.2 Image compression

In image applications, often, the Peak Signal to Noise Ratio (PSNR) is used
to evaluate the resulting images after the quantization process. The PSNR
is defined as follows:

2
PSNR = 10log)g ——5— 250 (4.11)
553 (f G 5) = £, 5))
i=0 j=0

where f(i,7) and f(i,j) are respectively the grey level of the original image
and the reconstructed one. All grey levels are represented with an integer
value comprised in [0, 255].

Comparison with previous works: Fig. 4.22 shows the original image
of Lena (512 x 512 pixels). Figs. 4.23 and 4.24 show the encoded images using
32 codewords respectively with LBG and ELBG with random initialization.
Comparing these two figures, we find an obvious improvement.

N¢ | Modified K-means ELBG
PSNR (dB) | Iter. | PSNR (dB) | Iter.
256 31.92 20 31.94 10.4
512 33.09 17 33.14 10.6
1024 34.42 19 34.59 11.8

Table 4.6: Lee et al. and ELBG comparison

In [39] Lee et al. present an enhanced performance K-means algorithm.
They improved both the classical K-means algorithm and Jancey’s method

51

Figure 4.22: Original image of Lena

Figure 4.23: LBG reconstructed image of Lena

[40]. The modified K-means algorithm was stopped when the MSE was

52

Figure 4.24: ELBG reconstructed image of Lena

within 0.05% of the previous one. This is equivalent to our ¢ = 0.00025.
Table 4.6 shows previous results and our present results when initialization
by splitting is used. These results refer to Lena’s image 512 x 512 pixels of
8-bit gray levels. We underline that our results are averaged on 5 runs. In
this case we improved both the error and the total number of iterations, that
is about half.

In [53] Karayiannis and Pai improve Fuzzy Algorithms for Learning Vec-
tor Quantization. They used the Lena image of size 256 x 256 pixels of 8-bit
gray values and 512 codewords. As their method depends on several param-
eters, they executed several runs with different parameter values. Among
their results the best one was a PSNR of 32.62 dB. With the same initial
hypothesis we obtained 33.04 dB with the random initialization and 33.09
dB with the initialization by splitting. These results are each the average of
D runs.

A study when N increases. When N¢ increases the quantization
problem becomes more difficult. In fact, more codewords and, consequently,
more parameters must be found. Therefore, more local minima can be found
by the VQ. We think that a good VQ should work well even in this cases.
In Fig. 4.25 we report the results we obtained. We used Lena’s image with
512 x 512 pixels. They are the average PSNR calculated on 5 runs. The
worst performance is obtained by the LBG algorithm both with random

53

Np=16384
Inf
© ELBGqg
X ELBG,
45,000 - X LBGng
®
® LBGyy
40,000 - i
5 %
z (]
o
Z « o
o
35,000 4 .
[]
¥
] x X
s x x X
30,000 4 ¥ « X
Q X
25,000 : : : :
10 100 1000 10000 100000

Figure 4.25: PSNR in dB versus the size of the codebook

initialization and initialization by splitting. The figure clearly shows that
LBG with random initialization finds very bad local minimums. And when
N¢ increases there is very little improvement in the PSNR. With initialization
by splitting things go better, but a comparison with the ELBG shows that,
above all for N greater than 4096, there is a large difference. ELBG succeeds
in escaping from bad local minimums. Further, when No = Np = 16384, it
finds the global optimum. In a few iterations it puts every codeword equal
to a different learning pattern!

4.8 Conclusions

In this chapter a new clustering technique, called ELBG, was introduced. It
is based on the concept of utility of a codeword. This new quantity shows
very interesting properties. It allows us to understand which codewords
are badly positioned and where they should be moved to escape from the
proximity of a local minimum in the error function. The analysis of the main
properties of the utility index has permitted us to develop an algorithm whose
computational complexity is negligible in comparison to the simpler LBG
algorithm. This algorithm improves decidedly the performance of the works
regarding the most recent advances in clustering tasks. Further, ELBG shows
all its potentiality when the number of codewords increases. As the number
of parameters to be found (the components of all codewords) increases, the

54

error function becomes more and more complex and there are plenty of local
minimums. So, it becomes very difficult to reach good results. With a
significant example we have shown ELBG works well also in these cases.
Our results have highlighted that when the number of codewords increases
ELBG improvement increases, too.

Chapter 5

The Enhanced LBG
Implementation

The aim of this chapter is to describe the particular solutions adopted to
keep the overhead of ELBG low with respect to traditional LBG [4]. Partic-
ular prominence is given to the tricks (regarding the logic structure of the
algorithm, the data structure and the technique for accessing the data) that
allowed us to obtain such a result.

The chapter is organized as follows: first, the symbols used are described;
afterwards, LBG and a possible implementation of it are presented; there-
fore, we describe ELBG and its implementation. Lastly, some results are
presented.

5.1 Notation

Before we begin the description of our implementation of LBG, we briefly
explain the notation we adopted. We wrote our routines in ANSI-C and,
for this reason, from now on, we will use a C-like syntax to describe many
procedures. This could be a problem when we have to effect some operations
with matrix because of the several nested for loops needed to scan the data.
So, the operations related to arrays and matrices will be described with a
Matlab-like syntax, too.

5.1.1 Terminology

In the rest of the chapter, we will use several matrices, arrays and scalars to
store the data and we tried to give a meaningful name to each of them. Gen-
erally, their names are constituted by letters whose meaning is the following:

%)

56

P: patterns

C: codebook (or, cell, depending from the context)

N: number

e S:sum

I: index

D: distortion

G: group

e H: hyperbox
e Un: united
e Sp: split

According to this notation, IC is the abbreviation for Index cell, N PC' stands
for Number of Patterns in the Cell, and so on.

Sometimes, we will substitute the expression “pattern belonging to cell
1" with the shorter term “z-pattern”.

5.1.2 Matrices, arrays, constants and scalars

Matrices, arrays and constants are indicated in upper case, scalars in lower
case. Sometimes, we wish to highlight the dimensions of a matrix or an
array. In such cases, the dimensions are put in brackets, just after the name
of the matrix or the array in question. For example, C(Ng, K) is the matrix
containing the codebook and it has Ng rows and K columns. If we specify
only one dimension, than we are referring to a column array. According to
this convention, the array A, constituted by N elements, A(NV), is equivalent
to the matrix A(N,1). Later, we will also use tri-dimensional matrices. For
example, H(N¢, K, 2), is a tri-dimensional matrix whose dimensions are N¢,
K, 2, respectively. Dimensions will be omitted when they are not considered
to be important for improving the understanding of the context.

Single elements, rows or columns of a matrix are indicated with a Matlab-
like notation. Some examples:

e A1(2,3)[1,2] is the first row and second column element of the matrix
Al. This matrix has 2 rows and three columns.

e A1(2,3)[:,2] is the second column of Al and A1(2,3)[1,:] is the first
row.

57

5.1.3 Matrix operators

Matrix operators are taken from the Matlab notation, too:

e operators for the sum and the subtraction of matrices with the same
dimensions;

e operators for the product of a matrix and a scalar;

e operators for the division of a bi-dimensional matrix by an array. For
example, A2(3,2)./A3(3) is a matrix with 3 rows and 2 columns ob-
tained from A2 and A3 so that its ith row is the ¢th row of A2 divided
by the ith element of the column array A3.

5.1.4 Special matrices

e zeros(r, c) is the matrix with r rows and ¢ columns whose elements are
all zeros. In a similar way, the array zeros(r) is defined.

e rand(r,c) is the matrix with r rows and ¢ columns whose elements are
randomly chosen. In a similar way, the array rand(r) is defined.

e infty(a,b,c) is the tri-dimensional matrix of dimensions a, b, ¢, respec-
tively whose elements are all +oo.

e false(r) is the boolean array where all of the elements are false.

5.1.5 A brief recall of the C notation
e o+ + is equivalent to a = a + 1;

e a+ = b is equivalent to a = a + b;

for(;;) stands for an infinite loop;

break is the condition for exiting from a loop.

5.2 LBG implementation

In our implementation of LBG, we store the Np patterns in the matrix
P(Np, K) where each row contains a learning pattern. The N¢ codewords
are stored in the matrix C'(N¢, K). Besides, we put the sum of the patterns
belonging to the same cell in S(N¢, P) and we use the array NPC(N¢) to
store the number of patterns belonging to each cell. m is the counter of

58

the iterations and D,, is the total distortion at the mth iteration as given
by eq.(2.4). Several techniques for calculating an initial codebook exist [32]
but, in this work, we are not interested in this phase. Therefore, we assume
that a random choice of the initial codewords is enough for starting-up the
algorithm. According to our symbology we can briefly describe the LBG as
follows.

The LBG algorithm

// Let Cy be the initial codebook and

// € > 0 the precision of the optimization
// process. A typical range of values for
// € is [0.001,0.1].

C = Cy;
D_; = +o0;
m = 0;

for(;;) // an infinite loop begins
{// Initialization of matrices and arrays
S = zeros(Ng, K);
NPC = zeros(N¢);
D = zeros(N¢);
D,, =0;

// Voronoi partition calculation
for(j =1;j <= Np;j++)
{i=index of the nearest codeword to P[j,]
NPC[i] + +;
S[i,:]+ = Plj,:];
fer = d(P[j,:], Cli:]);

// Termination condition check
if (P <o)
break; // exit from the for loop

// New codebook calculation
C =S./NPC;
}

99

5.3 ELBG implementation

A more complex data structure than the one adopted to implement the tra-
ditional LBG is required to execute the operations constituting the ELBG
block (chapter 4.4).

First of all, for each pattern, we have to store the index of the cell to
which it is assigned. This is needed because, when we want to effect a SoCA,
all of the patterns belonging to the cells involved in the operation have to be
identified. Such information is kept in the array IC(Np). We also have to
store the utilities of all cells. However, in order to save time, we avoid the
normalization according to (4.2) (division by Dyean) and we store the total
distortion of each cell directly in the array D(N¢). The correct execution of
a splitting implies knowing which hyperbox holds the cell in question. For
this reason we use the three-dimensional matrix H(N¢, K,2). In Hle, k, 1]
there is the smallest kth coordinate of all e-patterns. Similarly, He, k, 2]
contains the biggest kth coordinate of all c-patterns. All of the arrays and
matrices just defined are filled at the same time that the Voronoi partition
is calculated (point 2 of the ELBG).

5.3.1 Rearrangement of the patterns

The execution of the SoCAs inside the ELBG block implies a high number
of accesses to the matrix of the patterns (P). Particularly, given the index
of a cell, we need to locate all of the patterns belonging to it. In order to
increase the efficiency of our implementation of the ELBG, we developed a
method that, subject to preliminary sorting, allows us to quickly access the
required elements of the matrix P.

The technique of sorting we implemented consists of the rearrangement
of P so that the patterns belonging to the same cell form clusters. More
precisely, we try to obtain a situation where all of the patterns belonging
to the same cell are, generally, in subsequent rows of P. We underline the
word generally because, as we will see later, after the execution of a SoC, the
organization that we briefly described, can be slightly modified.

In Fig. 5.1 the situation of the patterns before sorting is depicted, practically
how it is at the end of the Voronoi partition calculation. Here, and in the
figures that follow, we adopt a different type of font when we refer to the
indices related to patterns or to the indices related to cells. After the sorting
of the data has been effected, the situation appears as in Fig. 5.2.

We see how the patterns belonging to the same cell are stored in subsequent
locations and that the structure is sorted according to increasing values of
the field IC'. In the same figure, a new array appears: IP(N¢). Each element

60

P IC

1 Patt; 3

2 Patt, V'

NPC 3 Patt; 4
7 3 4 Patt, 4
2 2 5 Patts ¥y 4
3 1 6 Pattg 5
4 3 7 Patt; z
5 1 8| Pattg 4
9 Pattg b 4

10 Pattyo 2

Figure 5.1: An example with 10 patterns and 5 codewords. This is the
situation of the matrices P, IC and N PC after the calculation of the Voronoi
partition.

P IC

1 Patts y 4

NPC IP 2| Patty z
2 T ™4[Pa z
1 6 5 Pattm 2

.: 3 7 _L>6 Patt; 3
s 1 10 __’ 7 Patt, 4
8 Pattg 4

9 Patts 4

10 Pattg 5

Figure 5.2: The same matrices of Fig. 5.1 are reported after the rearrange-
ment proposed. We can see that all of the patterns belonging to the same
cell are stored in consecutive rows of P. The vector I P is reported, too.

of it contains the index of the row where the patterns belonging to the cell in
question begin. Such values are calculated from N PC' because we know that
the patterns belonging to cell 1 begin at row number 1, after there are all
of the patterns of cell 2, and so on. Even if it could appear superfluous, I P
allows quicker access to the data to be considered. In fact, given the general
ith cell, we can immediately say that it is constituted by NPC([i] patterns
and that they are consecutively stored in P starting from the position I P[i].

5.3.2 The technique employed for the rearrangement

As for the rearrangement of the data, we tried to reduce the number of com-
puter memory accesses and data movements. For this reason, we minimize
the number of shiftings of the patterns by operating with their indices. We

61

M [1][2]]

® | 0 [1][2]

0 [1][2]]

()

©

Figure 5.3: Example of rearrangement.

must remember that, generally, the dimensionality of the patterns is greater,
or much greater, than two (K > 3). Working with indices implies that each
pattern is moved once. Regarding the indices, we adopted a technique that
needs a single shift for each of them. The comparisons to be effected have a
linear complexity, too.

In order to simplify the exposition of our algorithm for the rearrangement,
here we present a simple example illustrating the principle on which our
technique is based. This example has linear complexity, too, but the number
of shiftings is twice the number of elements to rearrange. The complete

62

procedure we followed will be given in section 5.5.

Let us suppose that we have seven cards, numbered from one to seven. Let
us suppose that they are lined up and hidden, as shown in Fig. 5.3(a). In this
figure and in the following, the hidden cards are represented as shaded. We
wish to reorganize them in an increasing order and we have at our disposal a
temporary location where we can place the cards that cannot be put in their
correct final position because it is occupied by another card. The temporary
location is shown in the lower part of Fig. 5.3(a) as a little unnumbered
square. Each time, we begin a sequence of operations from the first hidden
card on the left. If it is in the right place, then we turn it over and leave
it in that position. Otherwise, we put the card in the temporary location.
If in this place there are also other cards, we put it onto the others. If the
correct position for the current card (the one we just placed in the temporary
location) is not free, we repeat the same procedure for the card that occupies
that position and iterate the procedure until a free position is found. At this
point, the last considered card can be correctly positioned and, if other cards
are present in the temporary location, they can be put, one at a time, in
their correct positions because they are free as a consequence of the method
described. The procedure is repeated until no hidden cards remain and all
of the cards are in the correct place.

Let us describe the complete example of Fig. 5.3. Sub-figure (a) shows
the seven hidden cards. Let us flip over the first one and, as it is not a 1,
we put it in the temporary location (a). It is a 6 and, as the sixth position
is occupied, we turn the sixth card and put it in the temporary location,
above the 6 (b). This card is a 5, so we turn the fifth card and put it in
the temporary location, too (¢). Now we can see it is a 1 and the position
it should occupy is free. So, we put it in the first location (d). Now we can
empty the stack of cards in the temporary location as shown in sub-figures
(e)-(f). Then, let us flip over the second card and, as it is a 2, we leave it
in the second position, unhidden, and go on with the third card (g). By
iterating the procedure, we obtain the final result of sub-figure (0) where all
of the cards are sorted in an increasing order.

In section 5.5 we will describe in detail how, starting from this model, we
implement the technique that allows us to turn the data from the situation
of Fig. 5.1 into that of Fig. 5.2.

5.3.3 Access to cells whose patterns are fragmented

After the execution of a SoC, some patterns change their membership from
one cell to another. In particular, when we join two cells, their patterns
are, generally, stored in non-adjacent regions of the matrix P. In that case,

63

a direct access to the patterns of the new cell is not possible if only their
number and their starting position is specified. In order to avoid a global
rearrangement, of P after each SoC, we implemented a second type of access
to the data. It is based on the use of pointers and we employ it when the
patterns that we are interested in are subdivided in fragments (or groups).
Each fragment is constituted by a certain number of patterns belonging to
the cell in question and stored in consecutive locations. Again, the access
occurs by indicating the beginning of the patterns (present in /P) and their
total number (present in NPC'). But, in this case, the value of I P specifies
the location from where the first fragment is stored. Links between fragments
are managed with the help of a new vector: IG(Np). It contains two kinds of
information: either the number of the consecutive patterns constituting the
fragment in question, or the pointer to the first element of the next group.
The two types of information are distinguished by the sign of the numeric
value. An element of IG is the pointer to the next fragment when it is stored
with the minus sign. The value 0 (zero) means that we are concerned with
the last element of the last group for the cell in question.

P Ic 16
o »e 1 [Pat 7 3
IP[i]=27 . ——
[- ? 2 [Patt i Group A
NPC[i]=9 . ® 3 [Pat 7| [0
P begn - . . .
e 27 [Patt 7 2
® 28 [Patt R
e : 30 Patt i -1 Group C
“hg 40 [Patt 7 3
; 41 Patt i Group D
ed @ 42 | Patt 7|[o
50 1

Figure 5.4: Access to the patterns of the generic ith cell when they are, for
example, distributed among 4 fragments.

In Fig. 5.4 an example illustrating such access is reported. A matrix
P with 50 total patterns is represented and the 9 patterns constituting the
1th cell are highlighted. Not all of the elements of IG contain meaningful
information. These are exclusively in the positions corresponding to the first
and the last element of each group, according to the following criteria:

e when a value of IG is related to the first element of a group, then it

64

represents the number of patterns forming the same group;

e when a value of IG is related to the last element of a group, it is the
pointer (sign-inverted) to the first location of the next fragment;

e if a group is constituted by a single element (as it is for fragment C in
Fig. 5.4), IG holds just the index, sign-inverted, for the next fragment;

e a value of IG corresponding to the last element of the last group for a
cell, holds the value 0.

According to the previous considerations, the i-patterns of Fig. 5.4 are visited
following the order specified by the arrows, beginning from the row indicated
by IP[i] (IP[i] = 27, in this case). It should be noted that the order in which
we visit the fragments depends on the links between them. Here, they are
visited following the sequence B C A D.

The initialization of IG is effected after the execution of the procedure
turning the data from the situation of Fig. 5.1 into the one of Fig. 5.2. In
this case, IG can be obtained from NPC and I P, as the patterns are sorted
according to increasing values of the field IC.

5.3.4 Other arrays needed for the execution of the
ELBG block

As will be clear in the next sections, we need two other boolean vectors:
Sp(N¢) and Un(N¢). The former is employed to indicate the cells arising
from a splitting, the latter to indicate the cells that have joined with other
cells.

In table 5.1 we report all the arrays and the matrices we use to store the
data. Besides, the dimensions and a brief description are given for each of
them.

5.4 Description of the procedures implemented

Now, we can describe the whole algorithm. In order to make the exposition
clearer, we adopt a top-down methodology. So, we start from an high-level
description of the procedures and, gradually, go into details. In the practical
implementation of the ELBG, every function receives a long list of parameters
as input. As we do not want to make the explanation too complicated, we
will avoid such listings and we will assume that all of the variables employed
are global, so they are visible to all the functions.
The high-level description of the ELBG follows.

Name | Dimensions Description

P (Np, K) Patterns

C (N¢, K) Codebook

S (Ne, K) Sum of the coordinates
NPC (N¢) Number of patterns in the cell

e (Np) Index cell

D (N¢) Distorsion of the cell

H (N¢, K, 2) Hyperbox

IG (Np) Index group

IP (N¢) Index patterns

Sp (Ne) Split

Un (N¢) United

Table 5.1: Matrix and vectors adopted to store the data

The ELBG algorithm

Cy = rand(N¢, K);

C = Cy;
D_y = +o0;
m = 0;

for(;;) // an infinite loop begins
{Voronoi partition calculation;
// During the calculation of the Voronoi
// partition, D,, is calculated, too
if (Pt <=
break; // end of the infinite loop
else
{Dy—1 = Dy;
ELBG block;
// New codebook calculation satisfying CC
C =S./NPC,
m + +;
}
}

Now we will detail the functions just described.

65

66

5.4.1 Voronoi partition calculation

The procedure we are about to describe is similar to that we have already
seen in relation to the LBG. However, here we store a greater quantity of
information with respect to the LBG.

Voronoi partition calculation

// Initialization of matrices and arrays
S = zeros(Ng, K);

NPC = zeros(N¢);

D = zeros(N¢);

D,, =0;

H[:,:, 1] = +infty(N¢, K, 1);

H[:,:,2] = —infty(Neg, K, 1);

// Identification of the cells and calculation
// of the related information
for(j=1;j <= Np;j++)
{i= index of the nearest codeword to P[j,:];
S[i,:]+ = Plj,:];
NPC[i] + +;
Dlil+ = d(Pj,:], C[i,]);
D,+ = d(Plj,:], C[i,:]);
for(r=1r<=K;r++)
{H[i,r, 1] = min(H[i,r, 0], P[j,r]);
Hli,r, 2] = max(H[i,r, 1], P[j,r]);

IC[j] = i;
}

5.4.2 ELBG block

In this subsection we will describe our implementation of the ELBG block.
The schematic description of the procedure follows; after, we will explain
some of its particulars.

ELBG block

// First of all, the patterns are rearranged from

67

// the unsorted form of Fig. 5.1 to the sorted
// form of Fig. 5.2

global sorting of the data;

//Initialization of Sp, Un and IG

Sp = false[N¢]; Un = false[N¢];

1@ is initialized as explained in 5.3.3;

for(i=1;i <= N¢g;i+ +)
{Dmean - Dm/NC’;
if((D]i] < Dmean) AND (Spli] == false))
{// Let us begin the selection of the
// cells needed for a SoCA
if(NPC[i] ==
{l=0;
// such a value means that looking for
// the cell S is not necessary because
// the cell S; is empty

}

else
{// look for the cell S;
[=index of the nearest codeword to Ci,:];
if (Sp[l] == true)
// We assign to [a value indicating that
// Si has been previously split (and
// now it cannot be joined to another cell)
[=—1;
}
if (I >=0)
{// Let us look for p (S, is the cell
// to be split)
p = Roulette_wheel();
if(p>0)// S, was found
{SoCA;
// During the SoCA, dyq and dpeq
// are also calculated, according to
// (4.8) and (4.9), respectively
if(dnew < dold)
{SoC;
Dm+ - dnew - dold;
}
}

68

else break // exit from the for loop

}
}
}

After the rearrangement of the data and some operations related to the
initializaton, the array containing the distorsions of the cells is scanned se-
quentially. When a low-utility cell S; is found (i.e. D[i] < Dmean), We look
for the other two cells (S; and S,) needed to effect a SoCA. Let us remember
that S; should be joined to S;, while S, should be split into two cells. How-
ever, some considerations allow us to smartly reduce the number of SoCAs
effected at each iteration. They are:

e we do not allow a cell coming from one splitting (or more) to be joined
to other cells, even if its utility is lower than 1. In fact, if a cell derives
from the splitting of another one because it was too big, we think it
is not suitable trying to expand it again. For this reason, such cells
are identified by setting as true the corresponding value in the boolean
array Sp;

e we do not allow a cell coming from one previous union (or more) to
be split, even if its utility is higher than 1. In fact, if two (or more)
cells had been joined to form a bigger one, a splitting could create the
previous situation again. The cells deriving from unions are identified
by the value true in the boolean array Un.

These two considerations help us to simplify the execution of the SoCAs, as
will be explained later. Therefore, before proceeding with a SoCA, we verify
if the three cells S;, S; and S, satisfy the requirements. If S; or S; do not,
we go on with the sequential scanning of the codebook looking for another
cell S; from which a new SoCA could begin. Instead, if no valid cell S, is
found, then the ELBG block ends. In fact, this means that no more cells
with utility lower than 1, and not previously united, exist. The search for
S; (and the whole procedure of the union of S; with ;) is by-passed if S; is
empty. In fact, in such a situation, it is not necessary to assign any pattern
to another cell when y; is moved away.

5.4.3 Looking for cell S,

S, is searched by the roulette-wheel method (4.3). Now we will describe the
complete procedure to select S,; we must remember that codewords deriving
from unions cannot be split.

69

Roulette_wheel()

// Let us calculate and store in x the sum
// of the distorsions of all the cells that can
// be split.
for(x =0,p=1;p <= N¢;p+ +)
{if(D[p] > Dmean AND Unlp|] == false)
o+ = Dip};

}

// Let us verify that at least one cell with utility
// greater than 1 and not deriving from previous
// unions has been found.
if (x ==0)
{// The procedure ends and the value p = 0
// is returned.
return p = 0;

}

// Let us find the cell S, with the stochastic law
// described by (4.3). First, let us
// generate a uniformly distributed
// random number y in the range [0, z]
y = random(z);
for(x =0,p=1;p <= Ne;p++)
{if(D[p] > Dmean AND Un|p| == false)
{z+ = Dip;
if(x >=1y) // this value of p is returned
return p // the procedure ends

}
}

5.4.4 Description of a SoCA

Now, we will describe a SoOCA. Most of the operations executed store their
results in auxiliary locations of the memory. So, if the SoCA is confirmed
(i.e., it turns into a SoC), the values are copied to the general locations,
otherwise they are discarded. The names of the auxiliary arrays and matrices
are the same as the general locations. However, they are distinguished by

70

means of primes. Particularly, we indicate with a prime the arrays and the
matrices employed for the splitting and with two primes the ones we use for
the union. According to this convention, C’(2, K) is the matrix that will store
the codewords (y} and y;) deriving from the splitting of S,. C"(1, K) will
hold the codeword (y;]) coming from the union of S; and S;, and so on. Some
results are stored just in the general locations because, even if the SoCA
should be discarded, any wrong information they hold would be ignored. So,
the correct continuation of the algorithm would not be compromised.

P IC IG
1
6 Pattg 7 3
7 Patt; /4
8 Pattg /4 -43
20 | Palty 7 10
21| Patty 7
22 | Patty, V4
NPC IP Un 23| Palty ?
7[5 |[6][fase 24| Patty ?
p| 10 false 25| Pattys 7
7| 3 false 26| Patty 7
27 [Patty ?
28 | Palty ?
29 | Palty 7 0
34| Palty i 3
35| Paittgs i
36 | Patty i 0
43| Patty 7 2
44 | Patty, 4 0
50

Figure 5.5: Situation of the data related to the cells ¢, [, p, before the SoCA.

Once S;, S; and S, have been found, we have the situation of Fig. 5.5.
The values of Sp and Un for the three cells involved are also reported; they
are:

e S;: Spli]| = false because S; must be joined to S; and cannot come
from previous splittings. We are not interested in the value of Unl[i].

e S;: is the same as S;.

71

e S,: Unlp| = false because a cell to be split cannot come from previous
unions. We are not interested in the value of Sp[p].

In the following, we report the scheme for the SOCA and, after, we explain
it.

Description of a SoCA

// The three cells S;,5,,S, are fixed (the
// last one is needed only if S; is not empty).

// Operations related to splitting.

// The results are stored in C'(2, K), S'(2, K),
// NPC'(2), D'(2), H'(2, K, 2), IC"(2).
splitting of S, in S; and S);

// Operations related to the union of
// S; and S; in S].
// The results are stored in C"(1, K),
// S"(1,K), NPC"(1), D"(1).
if(NPC[i] > 0) // S; is not empty
{S"[1,:] = S[i,:] + S[l,:];
NPC"[1,:] = NPCJi,:] + NPC|l,];
C"[1,:]=S"./NPC";
// The distortion of the cell S] is calculated
D'[1] = S piesis AP, 1, C'1)
// Let us store in fip the index of the
// first i-pattern; it will be needed if
// the SoCA becomes a SoC to link the
// pattern of the two cells in the
// data structure.
fip=index of the first i-pattern;
}
// Calculation of the distortion related to
// the old three cells (S;, Si, Sp) and
// to the new ones (S, S, S,).
if(NPCi] > 0) // the cell i is not empty
{doa = Dli] + D[] + D[p];
dpew = D'[1] + D'[2] + D"[1];
}

else // the cell i is empty

72

{doa = D[p};

dnew = D[Zl] + D[p,]a

// Of course, in this case it will be
// dnew <= dold

}

e Operations related to the splitting. In the previous scheme, we ne-
glected all of the details related to the splitting because the procedures
to apply have already been described in 4.4.3. Besides, as P has been
rearranged, the input patterns we are interested in are stored in con-
secutive rows of P. So, the two procedures to be applied for the local
LBG (calculation of the Voronoi partition and calculation of the code-
book satisfying the CC) are almost identical to the ones applied to the
whole data structure of the ELBG. The access to the portion of the
data involved in the operation occurs by specifying the position from
where all of the p-patterns are stored and their number. These values
are stored in IP[p] and NPC/p], respectively (Fig. 5.5). In 4.4.3, we
explained how the initialization of the codebook for the local LBG is
effected and we said that the hyperbox holding S, must be known. This
information is stored in Hlp,:, :].

e Operations related to the union. Let us remember that this phase is
not executed if S; is empty because, in this case, the removal of the
codeword related to it would not leave any pattern to assign to other
cells. In addition to the calculation of the centroid for the new cell S,
we keep in the memory the index of the last i-pattern. So, if the SoCA
turns into a SoC, we already have the value needed to link the two cells
in the data structure, too. This operation is shown in Fig. 5.6.

5.4.5 Description of a SoC

When the distortion we obtain by substituting the old three cells and code-
words (S;, Si, S, and the related codewords) with the three new ones (S},
/, S, and the related codewords) is lower than before the SoCA, this is
confirmed and the corresponding SoC is executed. In practice, it consists in
the copying of the results of the SoCA from the auxiliary locations of the
memory to the general ones. Besides, the data structure must be adjusted
so that the access can continue to occur as described in 5.3.1 and 5.3.3. The
schematic description of the SoC is reported here; after we will explain it.

73

P ic| [16
1
6 Pate | 7 3
7 Patt; 7
8| Patg | 7| [43
NPC IP .
7 R N D N
7 34| Patty, | 7 3
35| Paty | #
36| Patty | 7 0
43| Patty | Z 2
44| Patty | 7 0
50

Figure 5.6: Linking of the last [-pattern to the first i-pattern. This operation
will be executed during the SoC.

Description of a SoC

// Operations related to the union.
// If the old cell S; is empty, no operation
// related to the union is executed.
if (NPC[i] > 0) // the cell S; is not empty
{// Copy of data to general locations
Cll,:] =C"[1,:];
S[l,:] = S"[1,:];
NPC[l,:] = NPC"[1,:];
Dll,:] = D"[1];
// S is identified as deriving from a union
Ull] = true;
// Linking of the patterns belonging to
// the two cells. The value of fip
// (first i-pattern) was stored
// during the SoCA
llp=index of the last [-pattern;
IG[llp] = fip;
}

// Operations related to the splitting.

// Copy of data to general locations.

Clp,:] = C'[1,:]; Cli,:] = C'[2,:];
Slp,:] = S'[L,:]; Sli,:] = 5"[2,:];
Hlp,:,:] = H'[1,::]; Hli,:,:] = H'[2,:,:];
NPC[p] = NPC'[l]; NPC[i|=NPC'[2];
DIp] = D'[1}; Dli] = D'[2];

local sorting of the patterns related to S; and Sj;

// Adjustment of the other vectors.

1PJi) = P[] + NPC[p);

// IP[p] does not have to be modified

// Si and S, have to be identified as deriving
// from a splitting and not from a union.
Spli] = true; Splp| = true;

Unli] = false;

// Un[p] was already false

74

e Operations related to the union. The first operations concern the copy-

ing of the data from the auxiliary to the general locations. Moreover,
S;, that has grown because patterns have been added, has to be iden-
tified as deriving from a union by setting Unll] = true. Afterwards,
the linking between the patterns of the two cells that have joined is
effected as shown in Fig. 5.6. Instead, IC' and H are not modified
because their values are necessary only when a splitting occurs. But,
cells deriving from unions cannot be split.

Operations related to the splitting. After the data have been copied
from auxiliary to general locations, S; and S, are identified as coming
from splitting by setting Sp[i] and Sp[p] to the value true. Moreover, it
is necessary to set the value of Unl[i], too. In fact, before the splitting,
Unli] was not considered in any way. Now, the old cell S; no longer
exists (while S; has grown because the old i-patterns have been added)
and has been substituted by one of the two cells coming from the split-
ting. So, according to the previous considerations, it can be further
split and this is possible only if we set Un[i] = false.

Before the splitting, the p-patterns were stored in consecutive locations
of memory. After the splitting, this is not true any longer, as we can
see in the example of Fig. 5.7. However, we can restore the order by
executing a simple local rearrangement. This means that only the data
related to the split cell are involved. In fact, all of them are stored in

75

p Ic NPC P P Ic
1 p[4 20 1
7| 6 24 .
20 Patt,y i 20 Patt,s ¥4
. 21| Pattn) 21 | Patty)
p region o, ot 7 22 [Patts 7
23 Patty; i 23 Patt,g Y
24 Patt,, i 24 Patt,, i
25 [Paitys 7 - 25 | Pattn 7
. . 26 Pattys i 26 Patt,g i
ZTegion o7 I patt,, 7 27 [Patty 7
28 [Patty) 28 | Patty 7
29 | Patty) 29 | Pattys 7
50 50

Figure 5.7: Local rearrangement of the patterns.

consecutive locations and the same procedure we apply to the whole
data structure can be applied only to the region in question. So, data
can still be accessed with the techniques previously described. It is not
necessary to modify G because its values are used only when we have
to join two cells. But, cells deriving from a splitting cannot be joined
to other cells.

After the SoC, we have the situation of Fig. 5.8 and it has to be compared
with that of Fig. 5.5.

5.5 Detailed description of the technique em-
ployed for the rearrangement

Now we will describe the procedure we execute to lead the data from the
unsorted form of Fig. 5.1 to the sorted situation of Fig. 5.2. This technique
derives from the one described in 5.3.2 and illustrated in Fig. 5.3. There,
we showed how the sorting of a certain number of cards (7, in that example)
developed through sequences of operations. We tried to optimize such a
procedure to reduce the number of shiftings through the locations of memory
that the patterns are subjected to. This is realized by means of a stack of
indices helping us to identify the order of the shiftings to effect before their
actual realization. So, inside a sequence of operations, we are able to directly
move all of the patterns (except for one) from the starting location to the
correct one without their having to pass through auxiliary positions. Vectors

76

P IcC 1G
) il

6 Pat, |[Z]|[3
7 [_Patty 7

8 [Pattg 7| | -43

20| Pats | (2| 4
21 Patty | [2]
22 [Patty 7

NPC IP $ Un 23| Paty | [#2]|[| O

7| 8 |[6] [fase] [true 24 [Patty, | 7| 6
r| 4 true | [false 25| Patty | [7]
i| 6 true | |false 26 | Patty 7
27| Patty | [7]
28| Patty | [7]

29[Patty | [7] O

34| Paty, | [Z][3
35 [Pattss 7

36| Paty | [2] O

3 Patg | [2] 2

44 Patty | [2] [34

50

Figure 5.8: Situation of the data related to the cells ¢, [, p, after the SoCA

that are already in their correct locations are never moved. The technique
of Fig. 5.3 was based on the a priori knowledge of the final position that
each card had to occupy. Here, the situation is slightly different because each
pattern can, correctly, be placed inside a range of positions, not just one. To
make the concept clearer let us consider, as an example, Fig. 5.1. There,
an input data set of 10 patterns belonging to 5 different cells is represented.
From this figure, let us construct Fig. 5.9.

Here, we subdivided P into 5 regions, one for each cell. This was done
assuming that, when the matrix will be sorted, the patterns belonging to cell
1 start from row 1 of P, then the patterns belonging to cell 2 follow, and
so on. In this way, the generic i-pattern, can, correctly, occupy any position
inside region i. In Fig. 5.9 and in the following pictures, unshaded rows
represent the patterns that already occupy a correct position, i.e. those for
which the value of IC is equal to the number of the region where they are.
Shaded rows identify the patterns that have to be shifted. The opportunity

77

o

Patt,
Patt,
Patts
Patt,
Patts
Pattg
Patt;
Pattg
Pattqy
Pattyo

N

NN N INNRN W O

OO O N[0T AW N -

waAWN N
Wl o8 W

=

Figure 5.9: Initial situation. Only the arrays and the matrices involved in
the sorting operation are reported.

of shifting vectors inside a range rather than to a single position, gives us
more freedom. However, it is necessary to establish a rule that allows us to
quickly identify the location that the pattern will have to occupy. For this
reason we use the array IP. According to the definition given in 5.3, in a
configuration like that of Fig. 5.2, I P holds the indices of the rows where
each region begins. During the sorting, I P plays a different role. Before the
procedure starts, it identifies the beginning of the regions, as we can see in
Fig. 5.9. Afterwards, it is opportunely adjusted so that the generic element
IP[i] contains the index of the first row of region ¢ that is not occupied by
an z-pattern. So, when, during the rearrangement, we run into an i-pattern,
it is assigned to the row IP[i] (even if the shifting will occur later). Then,
I P[i] is updated so that it contains the index of the next row in region i not
occupied by an i-pattern. Working like this, patterns already positioned in a
correct region are never involved in the rearrangement. When all of the rows
in region 7 have been assigned, I P[i] assumes a value outside the range of
region 7. But, it is no longer meaningful because we will not run into other
1-patterns to arrange.

In Fig. 5.10 we begin to illustrate the procedure. First of all, let us notice
that IP[2] = 5 has been set because row 4, the first in region 2, is already
occupied by a pattern that can remain in that position. Now, we will list
the steps through which the stack of the indices related to the first sequence
of operation is created. In this phase no pattern is moved; only the order to
follow for the shiftings is determined, as we can see in Fig. 5.10.

e Let us begin from the first vector not occupying a correct position
(P[1,:], in this case), let us shift it into the auxiliary location and
let us keep in the memory the number of the region where the initial
position has been freed; here, it is region number 1. Now, we have to

78

[
o [

1] _Patt, | [3] begin []
z 2| Path | 4| L

3] Patt, 4
z 4| Pat, | [z|]
5| Patts 7| ¢]
7 3 6| Patt 5| a [
z 7] Pat, | [1|]
3 4 8| Patg 7 | [5 |
. o [Palt, ™| [1 0]
5 5 10| Patty | | 2] b [6]

Figure 5.10: Sorting: stack creation.

identify a succession of vectors to shift until we find one belonging to
the region we started from. It is necessary to complete the sequence.

e P[1,:] has to be moved into region 3, in the row specified by IP[3]
(IP[3] = 6). Let us put the value 6 in the stack, increase by one I P[3]
and consider P[6,:].

e P[6,:] belongs to cell 5, so it has to be shifted to the row indicated by
IP[5] (IP[5] = 10). Let us put the value 10 in the stack, increase by
one IP[5] and consider P[10,:].

e as P[10,:] belongs to cell 2, it has to be moved into the row indicated
by IP[2] (IP[2] =5). Let us put the value 5 in the stack, increase by
one IP[2] and consider P[5, :].

e P[5,:] belongs to cell 1; so it is the element that allows us to complete
the first sequence of operations because it can be shifted into the region
we started from. At this point we are with the situation reported in
Fig. 5.11.

Now we are ready to begin the shiftings of the patterns following the
order determined by the stack, that we will empty according to the rule Last
In First Out (LIFO). The element (it is an index) on the top of the stack is
taken and the pattern corresponding to that index is put in the empty row
of P. Then, we remove that element from the stack and, iteratively, repeat
this procedure until the stack is empty. (Fig. 5.11-5.13). Afterwards, the
pattern in the temporary location is shifted into the empty row of P (Fig.
5.13) and IP[1] is increased by one.

After the first sequence of operations, we have a situation as in Fig. 5.14.
The procedure just described starts again from row 2 and continues until all
the vector is sorted as we wish.

79

Patt,
Patty
Patt,
Patts
Pattg
Patt;
Pattg
Patty
Paittyo

N
IS

NSRS

=

O 0 N|O|O;

WA WA N
w a8 (W

=

~—

Figure 5.11: Emptying of the stack (I

P
Patt,
Patt,
Patt,
Patt,

N

Patts
Patt;,
Pattg
Patty
Patt;o

O 0 N0 B[W N -
s] sfafals]s

=

W WA N
W N (W

=

Figure 5.12: Emptying of the stack (II

~—

k]
P IC
Patts 1
Patt, V4
Patts Vi
Patt, F1
Pattyo z
5

L Z |
4
z

A

N
Hlw N -

Pattg
Patt;
Pattg
Patty

Ol 0 N[o|g;

=

N4
AL

WA WA N
w| & |w

~—~

Figure 5.13: Emptying of the stack (III).

With this technique, for each sequence of operations, all of the patterns
(except the one the sequence begins from) are directly shifted from the initial
to the final location. We could work as in Fig. 5.3, by considering P and IC'
as a single matrix and placing the record pattern-cell into the stack. But, in
that case, all of the patterns involved in the sequence of operation are shifted
twice.

80

Patts
Patt,
Patt,
Patt,
Patt;o
Patt;
Patt;
Pattg
Patty
Pattg

AW N

N

SNNSNSANNCAE

Il

O|o © N|o|u»

wWhWNN
W 8w

=

Figure 5.14: Situation after the completion of the first sequence of operations.

When all the data have been sorted, the right values for I P are restored
so that they identify the beginning of each region. The final situation is that
of Fig. 5.2.

Chapter 6

Fully Automatic Clustering
System (FACS)

6.1 Introduction

In this chapter we describe the Fully Automatic Clustering System (FACS),
a CA/VQ technique whose objective is to automatically find the codebook
of the right dimension, when the input data set, the distortion measure and
the desired error (or target, er) are fixed [5]. It develops through a sequence
of iterations like ELBG, that is taken as a starting point. But, unlike ELBG,
FACS, evaluates the error at the end of each iteration and, according to
whether it is above or below the target, decides to make another iteration
with the same number of codewords or, if it is necessary, to increase or de-
crease N¢. Such an increase or decrease happens smartly, trying to insert
new codewords where the quantization error is higher and to eliminate them
where the error is lower. A similar strategy is proposed by Fritzke in [61,63]
for his competitive-learning algorithms, while FACS is a K-means type al-
gorithm [3,88]. Besides, in FACS, insertions and deletions of codewords are
regulated by a stochastic process; in [61,63] they occur deterministically.
Particular attention is paid so that the technique employed allows the con-
vergence of the algorithm towards a good solution in a few iterations. The
results presented in section 6.8 will show that a number of iterations com-
parable with the ones required by ELBG are enough. In chapter 4 the high
speed of convergence of ELBG has already been highlighted.

The chapter is organized as follows: section 6.2 reports some considera-
tions about ELBG. They suggest two useful criterions for the deletion and
the insertion of codewords into the codebook; in sections 6.3-6.7 FACS is
presented in detail and its performances are reported in 6.8. Conclusions are

81

82

presented in section 6.9.

6.2 Considerations regarding ELBG

In chapter 4, we have seen that a SoC consists of the combined execution of
two operations: the splitting of a cell and the union of two other cells. So,
N¢ remains unchanged because the codeword that is eliminated from one
place is inserted into another. For this reason we use the word shifting to
describe the whole operation. Instead, if we execute only the part related to
splitting or only that related to union, the number of codewords will increase
or decrease, respectively. In this way we can insert or delete some codewords
from a codebook. Such operations can be considered, in first approximation,
fast and intelligent because:

e insertions are effected in the regions where the error is higher and dele-
tions where the error is lower;

e operations are executed locally, i.e. without global reorganizations of
the codebook and the partition;

e several insertions or deletions can be effected during the same iteration
always working locally.

Insertions and deletions of codewords effected by FACS are realized work-
ing in this way, as will be explained in detail in the next section.

6.3 General Description

Each of the iterations through which FACS develops (FACS-iterations) can
be summarized as in Fig. 6.1. It can be divided into two parts: in the first
one the same operations that have been described in chapter 4 for ELBG
are executed. They are: the Voronoi partition calculation, the ELBG-block
execution and the calculation of the codebook satisfying the CC. For this
reason, such a sequence of operations was grouped into a single block that
we called ELBG-iteration. A FACS-iteration is completed by the execution
of the last block (the FACS-block) whose functionality is to smartly modify,
if necessary, the number of the codewords.

As illustrated in Fig. 6.2, we can distinguish two phases during the execu-
tion of FACS. Each of them is constituted by a sequence of FACS-iterations
like the ones in Fig. 6.1. For each FACS-iteration, the ELBG-iteration

83

FACS:-iteration

ELBG-iteration

A

Calculation of the
Voronoi partition
!
ELBG-block
!
Calculation of the
codebook
satisfying the CC

FACS-block

Figure 6.1: A FACS-iteration

Smart
Growing

y
Smart

Reduction

End

Figure 6.2: The two phases through which FACS develops

executes the same operations for both of the phases, while the operations
executed inside the FACS-block are different.

84

The first phase, called Smart Growing, consists of a certain number of
FACS-iterations, during which the number of the codewords is gradually
increased until the error barely goes below er. Such an increase happens
by splitting, one at a time, some cells, chosen among the ones with a total
distortion greater than Diean, i.. with U; greater than 1 (see eqs. (4.1) and
(4.2)). So, codewords are inserted where the distortion is higher.

During the second phase, called Smart Reduction, a certain number of
FACS-iterations are executed during which the number of codewords is de-
creased. More precisely, if during the first phase of an iteration (the ELBG-
iteration) the error goes below ey, as many codewords as are necessary to
obtain D > ep are deleted. A codeword deletion is realized by choosing a
cell whose total distortion is less than Dpean (i.e. with U; less than 1) and
by joining it to the nearest cell.

After an insertion or deletion occurs, we can calculate the new distortion
by modifying, in (2.4), only the contributions of the cells (D;) involved in
the splitting or in the union. So, we are able to immediately evaluate if
other insertions or deletions are necessary without recalculating the Voronoi
partition, therefore very quickly. The whole procedure for the selection and
the insertion or deletion of the cells will be described later.

Now, let us describe the two phases through which the algorithm develops,
as we have shown in Fig. 6.2.

6.4 Smart Growing

The initialization of the codebook could be executed starting from a single
codeword in the centroid of the whole input data set and inserting new ones
until the error is below e;. Afterwards, during the next iterations, codewords
in excess would be removed. However, we realized, experimentally, that a
better result is obtained when the insertion of the codewords is effected more
gradually. With the term better result we mean that, under the same value of
er, final codebooks with lower values of N are obtained. The phenomenon
was more evident when the complexity of the problem increased.

In Fig. 6.3 the whole phase of the Smart Growing is illustrated. The
growing happens by inserting, each time, as many codewords as are necessary
for the error to be equal to or less than (1 + p)er, where p > 0 and is
monotonically not increasing from pj,; t0 Pena (Pena = 0). In the same picture,
the FACS-block and the operations executed by it when we are in the Smart
Growing phase are highlighted. Inside the FACS-block, the block dealing
with the insertion of the codewords is further highlighted. A more detailed
description of its function will be given later in this sub-section. Once the

85

Begin

Codebook and p
Initialization
v
ELBG-
iteration

R

no End

FACS-block

while (D> (1+p)e;)
{Insert a codeword}

yes —

o End

Decrease p

Figure 6.3: The Smart Growing phase

law regulating the decrease of p with the iteration number (n) has been fixed,
we can summarize the Smart Growing as follows.

1.

Nec =1 and n =1 being fixed, place the first codeword in the centroid
of the whole input data set;

. insert as many codewords as are necessary to obtain D < (1+p(n))er;
. if (p(n) = 0) then the Smart Growing ends;

. execute an ELBG-iteration;

if (D < er) then the Smart Growing ends;

. n++;

. return to point 2.

86

We verified experimentally that it is better to select a high initial value
(about 1) for p and make it decrease quickly iteration by iteration. For this
reason we chose to make p decrease from p;,; to peng = 0 in ny iterations and
that, for the first n; — 1 iterations, it follows an exponential law, i.e.:

ae P forn=1,2,--n;—1
ol ~{ f (6.1)

0 for n = ng

where o and [are positive constant values.

Figure 6.4: p versus the number of iterations

Still experimentally, we saw that about ten iterations are enough to obtain
good results. In Fig. 6.4 p(n) is reported when n; = 11 and « and (were
fixed so that p(1) = 1.0 and p(n; — 1) = 0.01. Such values were used for all
of the tests we effected with FACS.

Fig. 6.5 details the operations that are executed by the block regulating
the insertion of the codewords inside the FACS-block and highlighted in
Fig. 6.3 for the Smart Growing phase. If the quantization error is above
the desired threshold ((1 + p)er)), the FACS-block inserts the number of
codewords necessary to take it just below. This happens by executing several
times the procedure of the splitting that was explained in 4.4.3 for a SoCA.
For a better understanding of the operations reported in Fig. 6.5, we must
keep in mind that:

e The selection of the cell to split and of the related codeword (S;,y;) is
made among the ones whose utility is greater than 1 with the roulette
wheel method (see (4.3)).

87

yes End
v

Select acell with
D> Dmean
v

Split the selected cell
into two cells

|
Update the codebook
and the partition

l

Ne ++

Figure 6.5: Detailed description of the insertion of the codewords

e The splitting of (S;,y;) in (S.,y%) and (S!,y7) happens as is explained
in 4.4.3.

e The update of the partition and of the codebook consists of the sub-
stitution of (S;,y;) with (S.y%) and (S!,y7).

)

6.4.1 Discussion about the law regulating the decrease
of the target error

The employment of the greedy strategy described above for the insertion of
the codewords, allows an enormous saving on the computation. However, it
is a non-optimal solution because not all of the elements of the codebook
and of the data set are considered. For this reason, each iteration includes,
as well as a number of local updates, also a global rearrangement. The
non-optimal effect of the local updates is more evident particularly in the
early iterations when the codebook is very disorganized. In that case, it
is necessary to insert a high number of codewords in order to ensure the
desired target. But, if the initial target is higher than the one specified
by the user and, gradually, approaches it, during the early iterations a lower

88

number of codewords is inserted. Iteration by iteration, because of the global
optimization, the codewords distribute themselves better and better; so, the
new insertions can occur more exactly.

Besides, also the following phase, i.e. the Smart Reduction, benefits from
such a way of operating because it will have to deal with the removal of a
lower number of exceeding codewords.

6.5 Smart Reduction

ELBG-
iteration

Termination
condition

yes

End

no

FACS-block
while (D<=ey)
{Delete a codeword}

Figure 6.6: The Smart Reduction phase

The whole phase of the Smart Reduction can be summarized as in Fig.
6.6. The number of the codewords is gradually decreased as soon as, at the
end of an iteration, the error is equal to or less than the target. Instead, if the
error is above the target we continue with the same resolution, i.e. with the
same number of codewords. In Fig. 6.6 the FACS-block and the operations it
executes during the Smart Reduction phase are highlighted. A more detailed
description of it is reported in Fig. 6.7. If the quantization error is equal
to or less than the desired value (er), the FACS-block deletes the number
of codewords necessary to take it just above. The elimination happens in a
smart way because we try to remove the codewords that contribute the least
to the total distortion.

89

Select acell with
D< Dmean

l

Find the nearest cell
to the one just selected

l
Join the two
selected cells
!
Update the codebook
and the partition

l

Ng -

Figure 6.7: Detailed description of the deletion of the codewords

To understand better the operations reported in Fig. 6.7, we must keep
in mind that:

e the cell to eliminate and the related codeword (S;,y;) are selected
among the ones whose utility is less than 1 with a probabilistic method
analogous to the one expressed by (4.3). Here, the cell to eliminate is
chosen with a probability that is a decreasing function of its distortion.
In mathematical terms:

1-U,

P =
P Eh:Uh<1(1 — Uy)

(6.2)

e the union of (S;,y;) and (S,,y;) to form (S],y}) is effected as explained
in 4.4.3;

e The update of the partition and the codebook consist of the substitu-
tion of (Si,y;) and (Si,y1) with (S7,y7).

The block related to the termination condition will be explained later.

90
6.6 Behaviour of FACS versus the number of
iterations and termination condition

The algorithm was developed so that, during the Smart Deletion, the error is
always near ey. This happens thanks to the continuous adjustments of Ng.

<

Smart Reduction

H
o
=
Smart|Growing

1.03
1.02
1.01 S—
1.00 I f—— S S T
0.99
0 20 40 60 80 100 120

Figure 6.8: Typical trend of N{, (it is N¢ normalized with respect to its
value after 200 iterations) and D (normalized with respect to er) versus the
number of iterations

In Fig. 6.8 we report the typical trend of the error and the number of
codewords FACS works with, versus the number of iterations. The graph
refers to an image compression task, whose details, that are not, at present,
important for understanding the picture, are given in the section related to
the comparisons.

For a better graphic visualization, we chose to report the normalized
values of the variables in question. In particular, N/, is N¢ normalized with
respect to the value found by FACS for that run after 200 iterations; the
RMSE (D) is normalized with respect to the target (er). We can immediately
see that, after the insertion of the codewords ends, the algorithm always keeps
the error very close to er. In particular, we can notice the correlation between
the two curves represented. When the error is greater than ey, N is kept
constant. As soon as D goes below ey, N¢ is automatically decreased until

91

the error is above ep.

The graph just examined suggests two criteria to employ as termination
conditions for FACS. Both of them are to be adopted when the Smart Grow-
ing phase has ended.

e the algorithm ends after a certain number of prefixed iterations;

e the algorithm ends when a certain number of consecutive iterations
with the same value of N~ have been executed.

If we choose one of them as the termination condition, it is possible that,
when FACS ends, the quantizer obtained, with Ng codewords, generates an
error greater than ep. Such an error, considering how the algorithm devel-
ops, is very close to er. So, according to its value, it could be considered
acceptable. However, even if it cannot be considered acceptable, it is suffi-
cient to remember that the quantizer with No codewords was obtained by
eliminating a codeword from the one with N¢ + 1 codewords, that produced
an error less than ep. Therefore, if we keep in memory the last codebook
that was able to ensure an error less than ep, we can stop the algorithm at
any moment and have a codebook satisfying the desired specifications.

6.7 Discussion about outliers

@ (b)

Figure 6.9: Dataset with two clusters and one outlier

We wish to underline again that FACS has been conceived with the aim of
autonomously calculating an opportune codebook having, as its only require-
ment, the satisfying of a target error (specified by the user) with the least

92

number of codewords. However, the presence of outliers may degrade the
results obtained by FACS. For example, let us consider Fig. 6.9(a). There,
we can locate two clusters of points and one outlier point rather “far” from
the clusters. Let us suppose FACS is launched and that, for a certain value of
er, it finds 3 codewords, one in the center of each cluster and one coinciding
with the outlier, as in Fig. 6.9(b). According to eq. (2.4), the MQE is given
by:
D1 + D2 + D3

MQE = N (6.3)

Given that the outlier is exactly represented by codeword number 3, we
have D3 = 0. Now, if we calculate the MQE only on the “clean” part of the
data set, i.e. excluding the outlier, it is:

MQE jeqn = No 1 (6.4)

Obviously, MQE .., > MQE. This implies that the presence of out-
liers can also heavily affect the final result obtained by FACS. This is not a
drawback of FACS, but it derives from the nature of the algorithm itself.

However, there are applications where the identification of the outliers
is essential in order to avoid their influence on the final result. In such
cases, FACS can still be used, provided a noise category removal mechanism
[69] is added for treating the outliers. Even if it is outside the scope of
this work, we wish to cite some methods commonly adopted in literature
that, opportunely readapted, could represent the desired modifications. For
example, a simple mechanism lets the algorithm run with the desired value
of er until it ends. Afterwards, the outliers are identified (for example, the
patterns constituting a cell with a single pattern), and removed (together
with the related codewords). Therefore, the algorithm can go on with the
“clean” data set so obtained. More advanced mechanisms could provide
for the removal of patterns constituting cells whose cardinality is less than
a prefixed threshold (for example, a certain quota of the total number of
patterns).

93

6.8 Results and comparisons

6.8.1 Introduction

In this section we present the results obtained by FACS and compare it with
both algorithms where the codebook has a fixed size, and techniques where
the dimension of the codebook is not known.

In order to perform the comparisons, both in terms of final result and
speed of convergence, we looked for similar techniques already documented
in literature. We found several algorithms that, as underlined by their au-
thors, can generate a codebook of opportune dimension that is able to ensure
the desired level of performance [61-64]. However, we noticed they have been
used either as traditional algorithms for VQ/CA [61], where N¢ is fixed, or
as algorithms for supervised learning and classification [63]. For some of
them it is explicitly said that they can be used to generate a codebook of the
opportune size once the desired error has been fixed [62,64]. Unfortunately,
we did not find any example where they were employed in this way. Be-
sides, also when they were used as traditional VQ/CA algorithms, we found
no numerical results directly comparable with FACS. For example, in [61],
Fritzke reports the results related to an image compression task for its Grow-
ing and Splitting Elastic Net. In particular, he uses the image of Lena [86]
of 480 x 480 pixels at 256 levels of gray. But, his results also consider an
intermediate processing of the data by means of a multi-layer perceptron; so,
they are not directly comparable to the ones obtained by FACS.

However, comparisons with some of these algorithms ([64] and GNG-U
[89]) have been performed following the suggestion of the author, i.e. making
the number of codewords “grow” until the desired target is reached. Besides,
the performances of FACS can be compared with the ones of a traditional
algorithm for VQ/CA where N¢ is a datum. In fact, it is possible to fix a
value of N¢ and see what error the V(QQ algorithm obtains. Afterwards, we
can choose that error as the target for FACS and see how many codewords
are necessary to obtain that performance. The comparison has been executed
with ELBG, that has obtained performances better than or equal to the ones
of the previous VQ algorithms existing in literature [38,39,53, 59].

Several more algorithms exist in literature where the number of the code-
words is not a datum but one of the results. Among them we have chosen
to make comparisons with FOSART, an algorithm in the family of Adap-
tive Resonance Theory (ART) [48,69] and the Competitive Agglomeration
algorithm [45].

Afterwards, we have tried using FACS for one of the classification prob-
lems reported in [63].

94

All of the tests have been effected on machines equipped with Intel
Celeron 366 MHz processors and running the LINUX operating system. The
related details will be given later.

As we have said in 6.7, FACS has been conceived with the aim of au-
tonomously calculating an opportune codebook having, as its only require-
ment, the satisfying of ey with the least number of codewords. We are aware
that some of the algorithms we used for our comparisons were designed for
solving different problems. So, a direct comparison with FACS may appear
rather forced. However, the techniques considered are the works in literature
that, to the best of our knowledge, can be considered more similar to ours.

6.8.2 Comparison with ELBG

In this sub-section we evaluate the performances of FACS for a typical task
of VQ: image compression. For our tests we chose the image of Lena of
512 x 512 of 256 gray levels. It was subdivided into 16384 blocks of 4 x 4
pixels and the related 16-dimensional vectors were used as learning patterns.

The procedure employed to effect the comparisons develops through the
following points:

1. a value for N¢ being fixed, ELBG is executed and its results, in terms
of RMSE, are collected;

2. FACS is executed using the value of the RMSE obtained by ELBG as
target;

3. the number of codewords found by FACS is compared with N¢.

The comparison was repeated for several values of No. As we will see,
FACS obtains, practically, the same number of codewords ELBG had been
launched with. Besides, we will see that it is possible to fix a relatively low
number of iterations (we have chosen 15) and obtain results nearly equal to
the ones we would obtain by making FACS run for a much longer period.
In the remainder of the article, we describe in detail the procedure we have
followed.

The ELBG was launched for No = 128,512, 4096 and we chose a very low
value for € (0.00000001). In this way, the algorithm ends when, practically,
it reaches the minimum for that run.

In table 6.1 the results obtained are reported. All of the values are the
mean calculated on 10 runs. For each value of No we report the results
obtained after 15 iterations and the ones obtained after the algorithm ends
(oo iterations). Each result is reported together with the variance calculated
on the runs effected.

95

goueurioprod HTH 1°9 9[qRL,

9¢'0 FGL90T | cO0FTVLOT | ¥O'OFL98 | €00 F€€CC | €00 F9C¢C | L0°0F+0C°6C | ©©
960+ 29901 | ¢O0F 180T | 6T°0F92.8 | €0°0 F6€¢CC | YO0 F8E'C | 90°0 +92°6C | ST

(s)m | dASWY ()" | dAswyu () | aswy
960F = ON 218 = ON 82T = ON N

96

Before we proceed to the comparisons with ELBG, some considerations
regarding the calculation times are necessary. As we saw in chapter 4, the
time required per iteration, once the input set has been fixed, increases almost
linearly when N increases, too. As we can see from Table 6.1, this is, more
or less, valid when passing from Ngo = 128 to N = 512, while this is not true
when passing from Ngo = 512 to N = 4096. Such behaviour occurs because,
in such a complicated task (the ratio %—? is 4), about half of the patterns are
involved in SoCA’s during the execution of the ELBG-block. Instead, in the
other cases considered, the contribution of the ELBG-block is lower and is
in agreement with the rate (about 5%) that we indicated in chapter 4 and
the time per iteration increases almost linearly when N¢ increases, the other
parameters being fixed.

er Nit =15 Nit =200
RMSE5(128) | N¢ | 12844+0.8 | 1249407
22] 1.003 £ 0.006 | 0.976 + 0.005
N 1.028 1
tu(s) | 216+0.03 | 2.14+0.03
RMSE(128) | Nc | 130.8+1.6 | 126.4+1.2
£2 11.022 £ 0.013 | 0.988 & 0.009
NG 1.035 1
tu(s) | 2214£0.04 | 2.17£0.03
RMSE5(512) | N¢ | 517.44+3.0 | 496.7+2.2
J¢ [1.01140.023 [0.970 4 0.017
N{ 1.042 1
tu(s) | 7.83+0.05 | 8.29+0.03
RMSE(512) | N¢ | 527.3+4.3 | 504.2+4.9
22] 1.030 £ 0.008 | 0.985 + 0.010
NG 1.046 1
tu(s) | 8.00£0.16 | 8.41+0.08
RMSE5(4096) | N¢ | 4143.5+16.7 | 4074.8 +16.1
e [1.012 +0.004 | 0.995 + 0.004
N{ 1.017 1
ti(s) [100.23 +1.38 [103.95 + 1.82
RMSE(4096) | N | 4188.6 +14.9 | 4118.9+17.3
<] 1.023 4 0.004 | 1.006 =+ 0.004
NG 1.017 1
tu(s) | 102.39 £ 1.25 | 105.67 + 1.29

Table 6.2: FACS performances

97

Afterwards, FACS was launched with e set to the RMSE found by ELBG
after 15 iterations (RMSE;5(N¢)) and after infinite iterations (RMSE (N¢))
(for the values of N¢ considered) as targets. In Table 6.2, the values obtained
by FACS after 15 and after 200 iterations are reported. As we can see, FACS
obtains codebooks with, practically, the same number of codewords used by
ELBG to achieve that error; the difference is inside 3% in all of the considered
cases. Besides, the values of N{, (the number of codewords obtained by FACS
normalized with respect to the value found after 200 iterations) show that,
after 15 iterations, FACS obtains a number of codewords that is very close
to the one it will obtain after 200 iterations; the difference is below 5% in
all of the considered cases. Also the mean time per iteration for ELBG and
FACS are comparable.

6.8.3 Comparison with GNG and GNG-U

Here, a comparison with GNG and its variant (GNG-U), both from Fritzke
(64, 89] is reported. They, gradually, insert codewords until the prefixed
number or until a certain “performance measure” is fulfilled. In our case,
the performance measure to be considered is the achievement of ey. The
error is calculated at the end of each epoch! (or iteration) and, like in FACS,
according to whether it is above or below ey, a decision about the insertion
of more codewords is taken.

All of the tests described here have been executed using the image of
Lena previously mentioned. Also the simbology is the same as the one used
in the previous comparison.

For the execution of GNG, as well as the desired er, it is necessary to
specify several configuration parameters. In order to choose such values, we
have referred to the works from Fritzke where he presented his algorithms
[64,89,90]. The values that we extracted from such papers follows:

e ¢ = 0.05,0.2
e ¢, = 0.006,0.0006

e o =0.5

3 = 0.005,0.0005
e A\ = 100,300, 500

In [63], Fritzke says that, in case of a finite training set, a common measure is the
number of cycles through all training patterns, also called epochs. Practically, an epoch is
equivalent to a FACS-iteration.

98

® e, = 90,88,120

We can see that, for a, a single value has been used in all of the examples
reported. On the contrary, different values in different examples have been
used for the other parameters. So, we have realized several tests for choosing
their best combination; we fixed ey = RMSE;5(128) and tried all of the
possible configurations. In the end, we have verified that, for this problem,
the best results were obtained by choosing ¢, = 0.2, ¢,, = 0.0006, 5 = 0.0005,
A = 500, Gmee = 50. We have also executed some tests with GNG-U, but,
if using, for this problem, the same values of the parameters used by Fritzke
, GNG-U performs worse than GNG. According to such considerations, we
have completed our tests with GNG, changing the final RMSE and using the
values determined above. The results obtained are summarized in Table 6.3.
In Table 6.3 two series of values are reported: the former (labeled Ep,)
refers to the values obtained after the least number of epochs necessary for
the achievement of er; the latter refers to the values obtained when the
algorithm goes on until a maximum of 50 epochs, in order to better locate
the codewords. N, is the number of epochs. As regards the test whose
target is RMSE;5(4096), the algorithm is stopped as soon as e is reached,
because of the high number (136) of epochs required. By comparing Table
6.3 with Table 6.2, we can clearly see that GNG ensures the desired target
with a higher number of codewords. Further, when the ey decreases, it also
needs more epochs than FACS for ensuring the target.

€r Epmin Epmax
RMSE;5(128) | N, 5 50
= Ne 165 165
29.26 Mo 17129 | 1.29

RMSE | 29.20 | 28.96
RMSE,5(512) N., 19 50
= Ne 624 624
22.39 Ng 1.22 1.22
RMSE | 22.14 | 21.88
RMSE15(4096) | N, 136 -

= Ne | 4456 | -
10.81 109 | -
RMSE | 10.78 | -

Table 6.3: GNG performances

99

6.8.4 Comparison with FOSART

Now, we present a comparison with a technique belonging to the family of
the Adaptive Resonance Theory (ART) algorithms proposed by Baraldi and
Alpaydin in [48,69] and called Fully self-Organizing Simplified Adaptive Res-
onance Theory (FOSART). The authors themselves use it also for tasks of
VQ. However, FOSART is not an algorithm designed exclusively for VQ, but
it can also be used for problems of hidden data structure detection (percep-
tual grouping) and probability density functions estimation.

The parameters we have used for our tests are the ones used by the
authors as default values, while the only quantity we have made change is
the vigilance threshold p. The termination condition used for FOSART is the
same as the one employed for ELBG with e = 0.0001 and the MSE as measure
for the MQE. The range of values chosen for p is such that the number of
codewords obtained is inside the range of values of N& considered for the
previous comparisons with ELBG and GNG. The results of the comparison
are reported in Table 6.4. The first column represents the value of p FOSART
was launched with. The final MSE obtained by FOSART was given to FACS
as target; in the table, the number of codewords determined by FACS after
15 iterations is reported. As we can see, under the same MSE, FACS needs a
number of codewords that is clearly less than the number of codewords used
by FOSART.

FOSART FACS
P N¢ | Nyrosarry | MSE | N¢ (15 it.)

0.0002 | 92 122 1109.7 65
0.0008 | 205 111 880.18 124
0.0010 | 323 84 735.42 194
0.0020 | 951 96 437.16 706
0.0050 | 2604 74 199.40 2423
0.0080 | 3816 59 131.16 3701

Table 6.4: FOSART comparison

6.8.5 Comparison with the Competitive Agglomera-
tion Algorithm
Here, we report a comparison with the technique proposed by Frigui and

Krishnapuram in [45]: the Competitive Agglomeration algorithm. FACS
and the Competitive Agglomeration algorithm share the property that the

100

number of the codewords (or prototypes, according to the nomenclature in
[45]) has not to be specified.

Let us consider, for example, one of the data set used in [45]. It is reported
in Fig. 6.10 together with the 4 codewords obtained by the Competitive
Agglomeration algorithm after 10 iterations. Once the RMSE previously
obtained has been fixed as the target, FACS, in only 6 iterations, finds 4
codewords located as in Fig. 6.11 and the RMSE obtained is practically the
same (about 99.8%) as the one of the Competitive Agglomeration Algorithm.

1

0.9

0.8r

0.7r

0.6

0.5

0.4r

0.3r

0.2r

0.11

0

I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6.10: Prototypes of the Competitive Agglomeration Algorithm after
10 iterations

6.8.6 Classification

The subject of this sub-section is a comparison between FACS and the Grow-
ing Cell Structures (GCS) algorithm, another technique proposed by Fritzke
in [63] and used, in the same paper, also for a problem of supervised classifi-
cation. Also in this case, the task of finding the right number of codewords
is left to the algorithm.

The test mentioned above concerns the problem of the two spirals: it
consists of 194 two-dimensional vectors lying on two interlocked spirals, which
are the classes to be distinguished in this case.

The whole procedure of the classification is constituted by several phases,
one of which (the clustering phase) consists in the execution of FACS. We
have executed our tests operating in two distinct modalities. In the former,

101

0.9

0.8r

0.7r

0.6

0.5

0.4r

0.3r

0.2r

0.11

Figure 6.11: Codewords of FACS after 6 iterations

the labels (class 0 or class 1) of the points constituting the spirals are used
during the clustering phase; in the latter, the clustering phase occurs without
using the labels that are employed in the following phase, i.e. the labeling of
the codewords.

Mode 1

In this case, the input values are given, together with the related outputs, to
the clustering system. The input is constituted by 194 bi-dimensional vectors
representing the two spirals, while the output is the related membership class
(0 or 1).

The procedure we have followed to perform the classification can be sum-
marized in the three following points.

1. Creation of the learning patterns to train FACS. They are con-
stituted by the tri-dimensional vectors obtained by joining each of the
194 two-dimensional vectors with the related output as the third com-
ponent.

2. Clustering Phase. FACS is launched giving it the tri-dimensional
vectors constructed at the previous point as the input data set. Later,
we will see the details of this point.

3. Codewords labeling. In order for the classification to happen cor-
rectly, the execution of the opposite operation of the one at point 1

102

is necessary. Therefore, in each tri-dimensional codeword, the compo-
nents related to the input have to be separated from the ones related
to the output. This, as we have done for the learning patterns, is used
to label the related bi-dimensional codeword. The codeword will be
identified as representing class 0 or 1 whether respectively more bi-
dimensional patterns belonging to class 0 or 1 are present inside the
cell in question (majority voting, [91]).

4. Classification. Each (bi-dimensional) input pattern is compared with
all of the labeled bi-dimensional codewords. Once the codeword with
the least distance from the pattern in question has been found, its label
is read and the pattern is considered as belonging to that class.

The following specifications are necessary so that the execution of FACS
(point 2) occurs correctly.

e Pre-processing of the data. When the components of the vectors
constituting the input patterns all have very different statistical distri-
bution (as regards both the order of magnitude and the shape of the
distribution) some problems can arise. In fact, it is possible that the
components with higher dynamics are approximated with high preci-
sion, while the ones with lower dynamics are approximated with poor
precision. In order to avoid such a situation, the tri-dimensional vectors
constituting the input data set for FACS, have been pre-processed by
normalizing each component with respect to standard deviations and,
for all of the subsequent operations, the vectors so obtained have been
employed;

e The distortion measure adopted. We tried to force FACS to gen-
erate a codebook with cells of tri-dimensional vectors as homogeneous
as possible . With the term homogeneous we mean that a cell is consti-
tuted by patterns belonging to the same class, i.e. the third component
of its vectors is the same for all of them. To realize this condition, we
employed the WSE (eq. (2.15)) as the distortion measure and we as-
signed a very high weight to the output component with respect to
the one assigned to the input components. In particular, we chose
w; = we = 1 and wy = 100 (the same result was obtained also for
w3 = 10 and, obviously, with ws = 1000). So, the clustering algorithm
is forced to divide the patterns by favouring first their membership
class and then also the neighbourhood in the bi-dimensional space. We
have verified that, for the problem in question and with the value of the
weights reported above, already with a value of er that generates only

103

two codewords, the related cells are entirely homogeneous. Of course,
this does not imply that two codewords are enough for a correct clas-
sification of the data.

The evaluation of the performances occurs in terms of both classification
error and number of iterations executed.

e Classification error. Figs. 6.12 and 6.13 graphically report the re-
sults found when the values er = 0.01 and ey = 0.001 respectively
have been used. In both cases, FACS runs for 15 iterations. In the
figures mentioned, points represent learning patterns and circles repre-
sent codewords. The decision regions (the black and white ones in the
figures) determined by the codewords are reported, too. For e = 0.01,
FACS found a codebook with Ngo = 74, while, for e = 0.001, a code-
book with N¢o = 144 was found. In the first case, there is only one error
in the classification of the learning patterns; in the second case no errors
are committed and, as we can see from the figure, the decision-regions
are well defined also when we are not in proximity to learning patterns.
Even if FACS runs for 200 iterations, it obtains the same number of
codewords found after 15 iterations.

Afterwards, we have executed the testing of the results obtained by
using the same test set employed by Fritzke, constituted by 576 points.
He compares this result with the one obtained by Baum and Lang [92]
that, for their best model, report an average of 29 errors on the test
set. Fritzke, with 145 codewords, obtains zero errors on the same test
set; FACS too achieves this result with the 144 codewords of Fig. 6.13.

Figure 6.12: Two spirals: supervised classification. ey = 0.01; No = 74

e Number of iterations. In [63] Fritzke underlines that, for every learn-
ing method, an important practical aspect is the number of pattern

104

ooooo

Figure 6.13: Two spirals: supervised classification. er = 0.001; No = 144

presentations necessary to achieve a satisfying performance. Fritzke
says that GCS needs 180 epochs to achieve the above mentioned re-
sult and reports comparisons with some earlier methods: Backprop-
agation [93] (20000 epochs), Cross Entropy BP [93] (10000 epochs),
Cascade-Correlation [94] (1700 epochs) and he says that the number of
epochs required by GCS is about one or two orders of magnitude less
than the other techniques reported.

We can see that FACS needs about 15 iterations to obtain the same
result as the GCS, i.e. a twelfth of the epochs required by the GCS.
However, after a careful analysis of both FACS and GCS, we have de-
cided that a comparison performed in these terms is not very precise.
In fact, the complexity of the epochs (iterations) can be different for
each of them. From the analysis effected with several profiling tools
we have seen that, in similar algorithms, almost the whole computa-
tion time is spent comparing the vectors of the input data set with the
vectors of the codebook (distance calculation). So, we can identify the
complexity of an epoch (iteration) as the number of comparisons exe-
cuted inside it. But, due to the incremental nature of such algorithms,
the number of codewords is not the same for all the iterations, therefore
the complexity of each iteration is different, too.

As regards FACS, for the example reported in the previous subsection,
we counted automatically the comparisons effected and, for ez = 0.001
(that produced the codebook with 144 elements), we found a value of
about 0.6 milion for the 15 iterations executed.

For GCS, we effected the calculation starting from the values given by
Fritzke. It begins with 3 neurons (that are equivalent to our codewords)
and, every 240 pattern-presentations, inserts a new neuron until the
final number of 145 cells is reached and for a total number of 180 epochs.

105

We estimated that this is equivalent to the execution of about 2.6 milion
of comparisons, that is about 4.3 times the number of comparisons

effected by FACS.

Mode 2

The test on the two spirals problem has been treated also working in another
mode. From the practical point of view, the steps to be executed are the same
as the previous ones but, now, the clustering phase occurs using only the part
of the patterns related to the input (i.e. the original bi-dimensional patterns)
without adding the membership class as the third component. Besides, we
use the SE (eq. (2.14)) as the measure for the distortion.

Giving to FACS e = 0.01, it has obtained Ngo = 69 codewords, producing
44 classification errors for the learning patterns. Using, ey = 0.001, it has
found No = 143 codewords and 0 errors have been obtained both on the
learning and in the testing set. The results related to the last example are
reported in Fig. 6.14; we can see that this is very similar to Fig. 6.13. Also in
this test, FACS was stopped after 15 iterations and the same considerations
about the computational complexity of the iterations made for the previous
mode can be repeated here.

Figure 6.14: Two spirals: unsupervised classification. e = 0.001; No = 143

6.9 Conclusions

In this chapter FACS has been presented, a new algorithm for clustering
and vector quantization that is able to autonomously find the number of
codewords once the desired quantization error is specified. The technique uses
some concepts previously developed for ELBG which works with a prefixed
number of codewords and rearranges them smartly to escape from the local

106

minima of the error function. Comparative studies regarding FACS have
shown that it is able to find good results in very few iterations. For complex
clustering applications only 15 iterations are sufficient. In comparison to
previous similar works a significative improvement in the running time has
been obtained.

Further studies will be made regarding the use of different distortion
measures to obtain detection of elipsoidal and linear clusters, and planar
range segmentation [14]. Other studies will regard the possibility of dealing
with input patterns with variable cardinality.

Chapter 7
The MULTISOFT Machine

7.1 Introduction

In this chapter, the MULTISOFT machine is described [7]. It is a cluster of
32 PCs, running the LINUX operating system and using the Parallel Virtual
Machine (PVM) software! [95,96] for inter-process communications.

The policy adopted for the management of the MULTISOFT machine
permits a very fast increase of the number of the Processing Elements (PEs),
that is the number of PCs. It is based on a completely centralized adminis-
tration of the system, but particular care was taken in order to minimize the
network bandwidth required in normal operative conditions. Several similar
machines exist in the world [97]?. Many of them are also based on centralized
administration, and, in many cases, a quota of the interconnection network
bandwidth is needed for the sharing of the file system. This aspect is very
important above all for systems like the MULTISOFT Machine, where the
total bandwidth is very low. Generally, the interconnection network in mul-
ticomputers is the bottleneck of all well-implemented distributed algorithms,
so its under-utilization directly affects the maximum value of the achievable
speedup.

7.2 Hardware organization

The MULTISOFT machine (see Fig. 7.1) is a cluster of PCs with the LINUX
OS. It consists of 32 Processing Elements (PEs or hosts) and a server (dupli-
cated for redundancy) acting also as a gateway towards the external LAN.

't is available together with XPVM for free at http://www.netlib.org/pvm
2A 1000-pentium based machine employed for applications regarding genetic program-
ming is described at http://www.genetic-programming.com/machine1000.html

107

108

All of the 32 PEs are mono-processor machines, 7 are based on Pentium-II
233MHz (we call them p233) and 25 on Celeron 366MHz (¢366). All of them
are endowed with 32 MB of RAM, one hard disk (ranging from 3.2 to 4.3
GBytes) and one Fast-Ethernet network card. One server (Server01) is a
bi-processor computer with two Pentium-II 300MHz and two network cards
and the other (Server02) is a mono-processor Pentium II 350MHz.

External LAN
_llg= J T E ol |
NN Wm]ﬂmﬂ . A Wmﬂ“: J— NN
Server 01 Wllll] - Hub W~ server 02
ol e ol

Host 01 . mn Host 32
= —

Figure 7.1: The structural of the MULTISOFT machine

The PEs are interconnected by a dedicated Fast Ethernet network and
all of them share the same bus. Physical connections have been realized by
means of four 12-port hubs distributed between two levels as we show in
Fig. 7.1. However, the electrical topology is such that all of the 32 hosts
are placed on the same bus. The highest level hub is connected to a switch,
where the servers are directly connected, too.

Inter-process communication is realized with the Parallel Virtual Ma-
chine (PVM) software. It allows the user to see several computers as a large
and single virtual machine and every process (task, according to the PVM
nomenclature) has a unique identifier (task identifier, tid) inside the vir-
tual machine. The PVM uses the transport functionality provided by the
TCP/(UDP/)IP that are directly implemented inside the kernel of LINUX.
Together with the PVM, we employ the graphic tool named XPVM,; it allows
us to visualize the diagram of the activity of the tasks versus time. It is very
useful during the debugging and the testing of parallel algorithms. Further,
it allows distributed algorithms to be described well, as will be shown in the
following chapters.

109

7.3 Management

For the management of a system with a high number of hosts, all sharing the
same configuration, we thought it was suitable to pursue a centralized policy
allowing the administrator to quickly modify the configuration of the whole
system without having to operate on the single machine. Besides, when the
system expands, we want to be able to quickly set up the new machines.

The first solution we considered was the realization of a system similar
to the one described in [97]. All of the hosts were disk-less machines and
remote-boot and Network File System (NFS) were employed. In this way,
each host shared most of its file-system (physically stored on the server) with
all of the other hosts. Files that cannot be shared were stored on the server,
too, but were kept in distinct directories, one for each host. These are the
files containing information related to the identification and the status of the
single host, its peripherals and the processes running on it. Therefore, they
are different for each of them and, for this reason, they cannot be shared.
Such a policy allows a quick update of the system because each modification
effected on the shared portion of the file-system of a host, automatically and
immediately, regards all of the other hosts. On the other hand, changes re-
garding the unshared portions are much less frequent. However, when such a
centralized solution is adopted, we have to consider two main problems. The
first concerns the access to a NF'S, much slower than a local file-system. The
second arises from the increase in the network traffic, with the consequent
significant reduction of the bandwidth available to inter-process communica-
tion.

On the basis of these considerations, we found two, apparently, opposite
requirements: the centralization of the information (in order to simplify the
management of the system) and the maximization of the performances by
saving bandwidth, so that it is completely at the disposal of inter-process
communication.

The solution we chose is a hybrid one between centralized and local man-
agement. Under normal conditions of working, all of the hosts use a file-
system stored on the local disk. Nevertheless, it is a copy of a file-system
that is physically stored on the server. It is the same for everyone and it
is downloaded by the hosts in an almost completely automatic way. Such
an operation of downloading is necessary only when modifications or failures
in the hosts occur. So, we need to take care of the configuration of only
two machines: the server and a host. In fact, once a generic host has been
configured (upgraded), its file-system is transferred to the server and from
there it is, automatically, downloaded by all of the other hosts.

Before describing in greater detail the policy we adopted for the manage-

110

ment of the system, we wish to say that, according to our terminology, each
host can operate in one of the three following modalities:

e Managing. It is used for the first installation or if a failure occurs.
e Service. It is used to update the hosts.
e Operative. It is the normal modality of working.

A host enters a certain modality when it boots. When it is necessary to
change the modality, its configuration is opportunely modified so that, after
the reboot, it enters the desired modality. Each host can operate in any
modality with no console (keyboard, monitor, mouse). Only the server has
a console.

Managing

Operative

reboot

Figure 7.2: The FSM describing the OS organization of the MULTISOFT
machine

The three modalities and the transitions from one modality to another,
can be represented by means of a Finite State Machine (FSM), as we report
in Fig. 7.2. The signals that make the host change (or remain in) its state
are the following:

e start: it is used to begin the first installation of the host. It indicates
that a new PE must be physically and logically added to the system,
or that an existing PE has to be reconfigured ex nowvo after a failure.

e power failure (pf);

e reboot: it represents the normal reboot of the host;

111

e sync: it is used to force the host to download from the server the most
recent, version of the file-system related to the operative modality;

e host failure (hf): it indicates that the host is not working correctly.

Now we will detail the operations effected in each modality and how the
transition from one modality to another occurs.

e Operative modality. This is the modality where the host, normally,
operates. It boots and works by using the local operative file-system
(that is the same for all of the hosts). Only the information related
to the host identification on the network (its name and its IP address)
differs for each of them. However, these data are not physically stored
on the host, but are all on the server which communicates them to
the host when it boots by means of a protocol such as bootp or dhcp.
Even if the host works by using a local file-system, the auditing of
the user accounts is effected by the server through the NIS protocol.
Besides, the home directories of the users are shared by means of the
NFS. However, users have also a personal local directory on each host,
so that they can choose to use the shared, the local directory or both of
them. If the host is in this state and a reboot or a power failure occur,
it reboots and remains in the same state. Instead, if the signal of sync
is raised, the host opportunely modifies its configuration and reboots
in the service modality.

e Service modality. This is a transitory modality. It is used by the
hosts to download the file-system that will be used in the operative
modality from the server. In this state, the kernel mounts a reduced
file-system, identical for all of the hosts, previously downloaded from
the server, exactly as it happens for the operative file-system. Also
in this case, the information identifying that host in the network are
assigned by the server during the boot phase. The service file-system
contains only the files that are necessary to the host so that it can
download the operative file-system from the server and store it on the
local disk. If no power failures or other generic failures occur, the
host modifies its configuration and reboots in the operative modality.
All of these operations are executed automatically. If a power failure
occurs, the host reboots in the service modality, while, if a generic
failure occurs, it is rebooted in the managing modality by inserting the
proper floppy disk.

e Managing modality. When a host operates in this modality, it is able
to work without using the local disk, as if it was a disk-less machine.

112

All of the files necessary to effect the remote-booting are stored on a
bootable floppy disk. After the kernel has been loaded, the host mounts
the file-system related to this modality by NFS. At this point, all of the
operations relating to the initialization of the local disk (partitioning
and formatting) necessary so that this can hold the service and the
operative file-system, are executed. Therefore, the service file-system
is downloaded from the server and the configuration is modified so
that the host can reboot in the service modality. The reboot gets the
hosts into the service modality, from where, if no failures occur, it
automatically enters the operative modality. If a power failure or a
generic failure occur the host reboots in the managing modality.

7.4 Updating the system

In the previous subsection we described the modalities where each host of
the system can operate. Now we will describe how its update is effected.
This is necessary, for example, when a program is upgraded or installed
ex novo. The modifications are made on any host working in the operative
modality. Afterwards, its operative file-system is compressed and transferred
to the server. Now, it is enough to raise the “sync” signal for all of the hosts
and these will reboot in the service modality. Therefore, as we previously
described, they download the most recent version of the operative file-system
from the server and, when they finish, reboot in the operative modality. So,
we can easily transfer the changes we made on a single machine to all of the
system and in a completely automatic way . We must remember that this
would be possible if the hosts mount their whole file-system by NFS but, as
we said, this would make the system work more slowly and would consume
transmission bandwidth. Instead, our method allows us to automatically
update the system without overloading the network when it works in the
normal operative modality.

Chapter 8

Parallel Implementation of
LBG and ELBG

8.1 Introduction

In this chapter we present a preliminary study regarding the parallel im-
plementation of techniques for unsupervised learning on the MULTISOFT
machine (described in chapter 7) [6,7]. Two algorithms have been consid-
ered: LBG (presented in chapter 3) and ELBG (presented in chapter 4).
The methodology adopted behaves poorly in the case of simple clustering
problems. The lack of a true broadcasting function in our communication
system makes everything worse. However, when the number of required com-
putations grows, making the clustering task more complex, the results are
encouraging because the speedup significantly increases. This means that
commodity supercomputers are very suitable for very complex unsupervised
problems. The chapter is organized as follows: in Section 8.2 the methodol-
ogy adopted for the parallelization of LBG and ELBG is described; in Section
8.3 the results are presented; lastly, 8.4 reports the author’s conclusions.

8.2 Parallelization of LBG and ELBG

In chapter 4, we saw that the overhead introduced on the traditional LBG by
the execution of the ELBG block is quite low. Besides, the profiling executed
on the software written to implement LBG allowed us to see that almost all
of the calculation time is spent to determine the Voronoi partition (point
2 of the LBG algorithm). More precisely, this time is spent to calculate
the distance between each input pattern and all of the codewords, in order
to choose the nearest one. Our work focused on the parallelization of this

113

114

operation by trying to share the load among all of the hosts. Now, we will
describe our parallel implementation of LBG and, after, the parallel version
of ELBG, that is identical to LBG only with the addition of the ELBG
block. The parallel versions of LBG and ELBG will be called PARLBG and
PARELBG, respectively, in the remainder of the thesis.

8.2.1 PARLBG

As we previously said, during the calculation of the Voronoi partition, each
input pattern is assigned to the nearest codeword to it. As this is done by
comparing each input vector with all of the codewords, it means that the
distance (Euclidean, in this case) between two k-dimensional vectors is cal-
culated Np x N¢ times. If we have N processors at our disposal, we can
launch, on each processor, a process (task, according to the PVM nomencla-
ture) that executes % of distance calculations. In practice, each task
keeps in the memory a different portion of the input patterns and the whole
codebook. It has to find the nearest codeword only for the portion of input
patterns that were assigned to it.

Given N equal hosts, we adopted a master-slave policy. At each iteration,
the master calculates, together with the slaves, the Voronoi partition, collects
the results and, finally, calculates the new codebook alone. At the beginning
of the new iteration, the new codebook is distributed, in broadcast, to all of
the slaves.

Fig. 8.1 is a screen-shot taken from XPVM. It reports a part of the
diagram of the tasks activity versus the time. It refers to a run of PARLBG
on 4 hosts, with an input data set of 16384 16-dimensional vectors and a
codebook of 128 elements. The input data set was obtained from the image
of Lena [86] of 512 x 512 pixels at 256 grey levels. It was divided into blocks
of 4 x 4 pixels, and, in this way, 16384 16-dimensional vectors were generated.
The figure illustrates the periods of activity and inactivity of the tasks, the
exchange of the messages and the overhead introduced by their transmission.
XPVM does not make the graphic tracing of the broadcast messages!, that in
our algorithm, are the messages relating to the transmission of the codebook
from the master to the slaves. The scale of times was divided into parts
labeled as (a), (b), (c) and (d); now, we will describe the operations executed
during each of them.

(a) Preliminary phase. The master spawns the slaves and waits until all
of them start correctly.

'PVM provides a function of sending data in broadcast to all the tasks; however, this
is not a real broadcast function because it is implemented by sending the same copy of
the data to all the tasks, one at a time.

115

Message —

Waiting [

Overhead [

Space-Time: Tasks vs. Time

Computing

c366h21:elbg_master

c366h22:elby_slave
c36bhZ3:elhy slave
ci6bhZa:elhy_slave

Figure 8.1: Task vs. Time diagram for PARLBG with £ = 16, Np = 16384,
Nec =128, N = 4. The scale of times is such that an iteration is about 0.75
S.

(b) Distribution of the input data set. In this phase, the master dis-
tributes (just once), to each slave, the portion of input patterns for which it
has to calculate the nearest codeword.

(c) Voronoi partition calculation. This is the heart of the parallel algo-

116

— afiessap

_ | Bunyreg, L] peayand m funndwod

e

1111

aaejs hgaiczyggco
anels Bga:gzyggeo
Jmsew fgla:zzyggco
aaejs hga: Ll2y99co
axels Bga:pzyggco
asels Bgpa:g LygaLo
aaels hgla:gLyggco
aaejs hgga:f Lyggco
axels Bgpa:g Lyggeo
anels Bgpa:y Lyg9Lo
aaejs hglaigLyggco
axels Bga:z lyggeo
anels Bgpa: | Lyg9ED
aaels hga:gLygsco
aaejs hga:goyggco
axels Bgra:goyggco

awn] "Sa Syse| :awn] -adeds

16384,

16. The scale of times is such that an iteration is about 0.60

256, N =

Figure 8.2: Task vs. Time diagram for PARLBG with £ = 16, Np

Ne

117

rithm. The first operation in this phase is the distribution, in broadcast, of
the codebook from the master to all the slaves. Even if we cannot see the
graphic tracing of the broadcast message, we can see that, for the consid-
ered example, the transmission of the codebook introduces a negligible delay
with respect to the whole phase. In fact, by carefully looking at all segments
labeled as (c), we see that all of the slaves, practically, start working at the
beginning of the phase. This is not true for the first iteration (the one after
segment (b)), but, from the same picture, we can see that such a delay is
the consequence of the messages transmitted during phase (b) still occupying
the network. Phase (c¢) ends when the master completes the calculation of
its quota of the Voronoi partition.

(d) Collection of the results from the slaves and calculation of the new
codebook. This is the critical part for the parallelization; in fact, during
its execution, only the master works, while the slaves, after they have sent
their results, wait for the new codebook from the master. Therefore, it is
opportune to try to minimize its duration. We effected several tests of the
algorithm when k, Np, No and N change and we analyzed the results, both
the graphic ones from XPVM, and the numerical ones from the profiling
of the master. We concluded that, for the implementation of PARLBG in
our system, it is better to minimize the information transmitted on the net-
work, but, in any case, not loading the master with the calculation of the
Euclidean distance. This is calculated by the master only during phase (c)
when it determines its portion of the Voronoi partition. According to these
considerations, the information transmitted from a slave to the master is
constituted, for each pattern, by the index of the nearest codeword and by
the QE related to it. Each slave sends these results when it completes the
calculation of its portion of the Voronoi partition. When all of these values
have been collected by the master, it is able to calculate the total distortion
and the new codebook. The master cannot calculate the new codebook until
all of the data are received. In order to minimize its periods of inactivity, it
operates as follows: it checks whether the results from any slave have been
received and executes all of the operations it can execute with those data; af-
ter, it checks whether there are other results, and so on until it receives all of
them. From the profiling of the master, effected for N = 1,2,4, 8,16, we saw
that the time it employs to calculate the new codebook, after all the results
have been collected, is less than 1%; so, it can be considered negligible.

Fig. 8.2 refers to the same input data set employed for the example of
Fig. 8.1 and, in this case, we have No = 256 and N = 16. We can see that
the periods of inactivity of the tasks increase when N increases, too. This
is due to the greater quantity of data to be transmitted over the network.
Therefore, when N reaches a certain value, the adding of other processors

118

does not produce any benefit, i.e. the speed-up saturates.

8.2.2 PARELBG

As we previously said, our implementation of PARELBG is substantially
identical to the implementation of PARLBG with the addition of the ELBG
block. It is executed, in serial mode, only by the master.

Fig. 8.3 reports a part of the diagram of the activity of the tasks versus
the time, for the same problem we considered in Fig. 8.1 for PARLBG. The
meaning of segments (a), (b), (c) and (d) is the same as in Fig. 8.1 with the
only difference that, in this case, inside phase (d), before the new codebook
calculation, the master also executes the ELBG block. In order to visualize
a greater number of iterations, in Fig. 8.3, we chose a different scale for the
axis of the times with respect to Fig. 8.1. However, we can take as reference
the time of “Computing” of the slaves at each iteration; it is the same both
in PARLBG and in PARELBG.

The first difference we can notice between Figs. 8.1 and 8.3 is that, in the
latter, the periods of inactivity of the slaves are longer than in the former.
This has to be attributed to the execution of the ELBG block by the master;
such an operation makes segments (d) longer than in PARLBG. We verified
that the periods of inactivity are reduced when the complexity of the problem
increases. In the cases we analyzed, an increase in the complexity consists
in the increase of N, Np being fixed. Besides, as we can see in Fig. 8.3,
the length of segments (d) is not fixed because of the ELBG block, whose
computing time is not deterministic as in the calculation of the Voronoi
partition.

Another difference between the diagrams, that we think could be im-
putable to the pair PVM-TCP/IP, is related to segments (c¢). Both in
PARLBG and in PARELBG, the master transmits the new codebook to
the slaves at the beginning of (c¢) and, as the dimensions of the codebook are
the same in both of the cases, the quantity of data to send over the network
is the same. However, the time required for the transmission is negligible in
Fig. 8.1, while it is not in Fig. 8.3. We repeated the runs several times,
but the result did not change. We think this could derive from different be-
haviour of the pair PVM-TCP/IP in the two situations we examined. As a
consequence of this, in PARELBG, the period of inactivity of the master at
the beginning of segments (d) is longer than in PARLBG.

PARLBG PARELBG

Ne | N|Tit (s)| S |Tit (s)]| 8
1] 062 | 100 | 079 |1.00

2 | 048 | 130 | 064 |[1.23

32 | 4] 023 |273| 040 |1.97
8| 016 | 389 | 033 |240

16| 013 | 460 | 032 |249

1| 117 | 1.00 | 141 |1.00

2 | 076 | 154 | 118 |[1.19

64 | 4| 045 | 260 | 087 |1.61
8| 024 | 489 | 075 |1.88

16| 019 | 626 | 073 |1.93

1| 228 | 1.00| 260 |1.00

2 | 131 | 173 | 185 |1.40

128 | 4| 075 | 305 | 127 |204
8 | 049 | 469 | 1.00 |2.61

16| 028 | 817 | 091 |2.86

1| 451 | 1.00 | 5.00 |1.00

2 | 244 | 185 | 317 |1.58
256 | 4 | 131 | 344 | 202 |248
8 | 077 | 583 | 148 |3.39

16| 060 | 751 | 1.25 |4.00

1] 930 | 100 | 990 |1.00

2 | 477 | 195 | 577 |1.72
512 | 4 | 249 | 373 | 350 |2.83
8 | 137 | 679 | 237 |4.18

16| 1.03 | 9.02 | 186 |5.32

1| 1856 | 1.00 | 2047 |1.00

2 | 939 | 198 | 11.10 |1.84
1024 | 4 | 477 | 389 | 694 [2095
8 | 259 | 717 | 441 |465

16| 1.65 |11.24| 322 |6.35

Table 8.1: Speed up (S) for PARLBG and PARELBG

119

120

N — — -
- =)
=
e
]
=}
e =
-

Waiting

Space-Time: Tasks vs. Time

S E—

o
w =
=
= £
E
£
= 8

c366h21 elbg_master
c3b6hZZ elbg_slave
c3b6hZ3:elbyg_slave
c3e6h25elby_slave

Figure 8.3: Task vs. Time diagram for PARELBG with & = 16, Np = 16384,
Ne = 128, N = 4. The scale of times is such that an iteration is is about
1.27 s.

121

8.3 Results

In this section we report the performances of PARLBG and PARELBG in
terms of speed-ups (S). Performances, in terms of final MQE and number
of iterations required for the convergence, are identical to the ones obtained
by the corresponding serial versions. On this subject, several comparisons
with other existing techniques [38,39,53,59], both hard and fuzzy, both k-
means and competitive learning, are reported in chapter 4 and in [1-3]. In
such comparisons, ELBG obtained results better than or equal to all of the
other considered techniques, as regards both the final MQE and the number
of required iterations. Besides, the difference in favour of ELBG increases
when the complexity of the clustering problem increases, too and the final
MQE ELBG obtains is, practically, independent of the initial conditions.
Before reporting the numeric values related to S, we think that some
considerations about the validity of the results obtained regarding the times
of calculation are worthwhile. LBG is a deterministic algorithm, i.e., after
the initial codebook has been fixed, it always develops in the same way. The
same deterministic behaviour has to be followed both by the serial and by the
parallel versions. However, the utilization of a Fast Ethernet-based network,
whose management is not deterministic, gave us slightly variable results.
Regarding ELBG, we must also consider the non-deterministic behaviour of
the ELBG block. So, in order to make allowance for these factors, all of the
results we present are the mean value of 20 runs. In Tab. 8.1 we report the
performances of PARLBG and PARELBG in terms of S with respect to the
time required per iteration; the input data set is the same we adopted in the
previous section. Some considerations regarding these results follow.

e We can see that, for all of the examined cases, PARLBG presents a
higher value of S than PARELBG. This is obvious because of the serial
execution of the ELBG block only by the master, while the time of
activity for the slaves is the same as PARLBG.

e The number of processors (N) being equal, generally, S increases when
the complexity of the problem increases, too. In this case, the complex-
ity is determined by the dimensions of the codebook (N¢) because we
fixed the input data set. Such a trend is justified by the decrease in the
time of inactivity of the slaves. However, there are some cases where
this trend is inverted. For example, let us look at PARLBG when we
change No = 32 into No = 64 for N = 4, No = 64 into Ng = 128
for N = 8, No = 128 into N = 256 for N = 16. We saw that such
behaviour derives from the increase of the overhead in the transmission
of the codebook from the master to the slaves.

122

e N¢ being fixed, when N increases, S saturates. This occurs because
the increase of N prolongs the periods of inactivity of the slaves and, in
practice, their contribution to the algorithm no longer increases. Both
for PARLBG and PARELBG, when N¢ increases, saturation occurs
for higher values of N. Also in this case, it is a good trend because
both of the parallel algorithms we considered perform better with high
complexity problems.

8.4 Conclusions and future developments

The work presented in this chapter is a preliminary study regarding the par-
allelization of clustering algorithms on the MULTISOFT machine, a com-
modity supercomputer. In particular, we analyzed two techniques for V(Q
(LBG and ELBG) and derived a parallel implementation for each of them
(PARLBG and PARELBG, respectively). We could see that some points,
such as the calculation of the Voronoi partition, are easy to implement on
the system we described, others can be improved. Regarding PARELBG,
we are thinking of developing a new version of the ELBG block that could
be executed in parallel by all of the hosts in order to increase the speed up
of the whole algorithm. Another improvement, whose benefits would inter-
est both PARLBG and PARELBG, can be introduced in the inter-process
communication by the utilization of a real broadcast function. In fact, in
the current implementation of the two algorithms, the broadcast transmis-
sion of the codebook from the master to the slaves is effected by PVM by
simply sending the same copy of the data, one at a time. With this policy
of broadcasting, the speed-up tends to decrease when the number of PEs
increases a lot. However, for the number of PEs we considered in this work,
such behaviour does not take place. With a function of real broadcast (as
the one provided by the UDP on a Fast Ethernet network), the master could
transmit the codebook on the network, just once per iteration, and all of
the slaves could read it at the same time making the speed-up higher than
at present. The last improvement regards the possibility to use efficiently

a distributed system whose PEs are based on processors of different speed
and/or types, as the MULTISOFT machine is.

Chapter 9

PAUL: A Parallel Algorithm
for Unsupervised Learning

9.1 Introduction

The parallel implementation of an efficient serial clustering algorithm is, of-
ten, not very efficient because of the intrinsically serial nature of some of
the operations executed. This is a strong limitation to the achievable speed
up, independent of the available systems and the technique adopted for the
parallelization.

The fundamental idea from which this work arises is to perform the paral-
lelization of an algorithm by substituting intrinsically serial operations with
efficiently parallelizzable versions that try to approximate the original ones
as well as possible. On the one hand, we expect the deterioration of the final
quantization error; on the other, we expect an improvement of the speed up
with respect to the value we would get by parallelly implementing the original
algorithm leaving all of the computational load to a single task. Sometimes,
in the remainder of the chapter, we will use the terms performance when
referring to the result obtained by an algorithm in terms of final error and
efficiency when referring to its computational complexity.

The work presented in this chapter (and in [8]), implemented on the MUL-
TISOFT machine (chapter 7), has been developed following the philosophy
of compromise between performance and efficiency. It is an UL algorithm
whose ideal field of application is constituted by very complex problems of
unsupervised learning with a lot of both patterns and codewords.

The serial UL algorithm we considered is ELBG (chapter 4). By means
of many examples, it has been demonstrated that ELBG achieves good per-
formances, practically, independently of the initial conditions. Besides, the

123

124

employment of sub-optimum techniques and the particular implementation
(chapter 5) made it efficient. However, it belongs to that family of algorithms
that cannot be efficiently implemented in parallel because of the serial nature
of some operations it executes. In this context,it is important to consider the
preliminary study carried out in chapter 8, where a non-approximated par-
allel implementation of both LBG and ELBG on the MULTISOFT machine,
called PARLBG and PARELBG respectively, has been presented.

The analysis of the results obtained has been very useful for understand-
ing how to modify ELBG in order to develop a new parallel algorithm rep-
resenting a compromise between performance and efficiency according to the
philosophy described above. The technique designed and implemented, con-
stituting the subject of this chapter, has been named Parallel Algorithm for
Unsupervised Learning (PAUL).

The results obtained have been satisfactory because, even though PAUL
only tries to approximate ELBG, its performances are very close to those
of ELBG and, as we expected, it is more efficient than PARELBG. Besides,
PAUL inherits from ELBG its independence of the initial conditions and the
high speed of convergence.

The special expedients used for implementing PAUL efficiently on a paral-
lel computing system imply some limitations to its scalability when the num-
ber of process it is subdivided into (V) grows. In fact, PAUL has practically
the same performances as ELBG when the number of classes (or codewords,
N¢) is high with respect to N. While, when it is %Q < 2, PAUL becomes
equal to PARLBG with consequent deterioration of the performances.

According to the results obtained and illustrated in Section 9.3, we have
the confirmation that PAUL has very complex problems with a lot of patterns
and codewords as its ideal sphere of application. However, as will be made
clearer in the same Section 9.3, the efficiency of PAUL allows it to outperform
other algorithms also for problems falling outside its ideal field of application.

The chapter is organized as follows: in Section 9.2 PAUL is presented and
its results and comparisons with other algorithms are reported in Section 9.3;
lastly, Section 9.4 reports the author’s conclusions.

9.2 The algorithm

9.2.1 General considerations

The fact that the results, in terms of speed-up, were satisfactory for PARLBG
and less for PARELBG, shows that the parallel computation of the Voronoi
partition, as there implemented, is an effective solution while the serial exe-

125

cution of the ELBG block is a strong limitation for the maximum achievable
speed-up. For example, as regards the compression of the image of Lena
considered in chapter 8, the execution times for the serial version of the al-
gorithm on the MULTISOFT Machine indicate that, on such system, the
ELBG-block introduces an overhead of about 10 — 20% per iteration. Conse-
quently, according to Amdhal’s law [98], the maximum achievable speed-up
with an infinite number of processors is 5 <+ 10. This theoretical value does
not include the time spent in inter-process communications. So, considering
the experimental results obtained, we realized that a new implementation
of the ELBG block, or an approximated one was necessary. Such an imple-
mentation had to allow the parallel execution of the ELBG block without
excessively increasing the inter-process communication.

Another problem to be solved regards broadcasting. In PARLBG and
PARELBG, the master, at the beginning of each iteration, broadcasts the
codebook to all of the slaves. Although we use a network with broadcast
functionalities, PVM implements such a function as a sequence of point-
to-point transmissions to the slaves. From the point of view of the user
interface, the implementation is totally transparent; but it is not the same
as regards the performance because the broadcast potentiality of the Fast
Ethernet are not used. On the other hand, the management of a reliable
broadcast communication is a rather complex problem [99].

Besides, in order to allow PAUL to deal with very complex problems (i.e.,
with high values for Np, N and k), a policy for the efficient management of
the memory has been developed ad hoc.

For the problems just reported, and for other considerations that will be
presented in the following, several important modifications have been made
in PAUL with respect to PARELBG. They can be summarized as follows:

e cach task locally performs the ELBG block on a portion of the code-
words and without any communication with the others;

e the broadcasting of the codebook has been eliminated. With the new
algorithm, each process directly transmits data to each of the other
processes. As we will see later, such transmissions do not concern all
of the codebook, but parts of it;

e if the physical memory of a host is not enough to store all of the data,
the memory necessary to execute the several pieces constituting an it-
eration is allocated when it is needed and released when it is no longer
necessary. Such a solution allows us to work with very complex prob-
lems.

126

9.2.2 The essential points of the new algorithm

In this sub-section we will outline how PAUL works, while, in the following
sub-sections, we will progressively explain the details related to the imple-
mentation. Like ELBG and PARELBG, PAUL is an iterative algorithm. It
is executed in parallel by 1 master and N slaves.

The master

The master deals with the operations related to the initialization and the
termination of the algorithm. Besides, at each iteration, it collects from the
slaves the data that are necessary to check the termination condition (that
is the same as the ELBG). If this is verified, it ends all processes correctly.

The slaves

The slaves all work in the same way and, in the following, we will indicate
the generic slave also as generic task or, more briefly, as task.

Fig. 9.1 outlines how the generic task works. It is possible to distinguish a
part related to the initialization (phase Fp) and an iterative part, subdivided
again into two phases (F; and Fj;). During F7, the calculation of the Voronoi
Partition is executed; during Fj; the ELBG block is executed and the new
centroids are calculated. The last part of both of these phases provides
for the sharing of the results with all of the other tasks. The task leaves
the iterative phase (and finishes) when the master, once the termination
condition is verified, sends the kill signal to all of the tasks. More in detail,
the operations executed during the different phases, are the following:

e [4. This is the initialization phase. In Fj, the master assigns to ith
process a subset (X;) of the input patterns. The set formed by all of
the Xj is a partition of the input dataset. As this operation occurs only
at the beginning, we call it static partitioning. Moreover, during this
phase, the master transmits all of the input patterns to the tasks.

Besides, each slave computes, autonomously and randomly, the initial
codebook. The codebook autonomously calculated by each slave with-
out any interaction is the same for all of them. This is achieved by
employing the same technique that will be used for the autonomous
selection of the cells (see Section 9.2.3 for details).

e Fj. At the beginning of this phase, the ith task, autonomously, selects
a subset of the codebook (Y;) and the related cells. In the following,
we will call them local codewords and local cells, respectively. All of

127

Initialization

b 4

<
<

F

A
Determination of the groups of cells

v

Voronoi calculation

v

Results sharing with other tasks

FII 3
ELBG Block

v

Centroids calculation

v

Results sharing with other tasks
[

Figure 9.1: Operations executed by the generic task

the Y; constitute a partition of the codebook. As such a partitioning is
different at each iteration, we associate the adjective dynamic to it.

Afterwards, for each pattern belonging to X;, it finds the nearest code-
word of the whole codebook (Y7). This is the calculation of its portion
of the Voronoi partition.

Lastly, it shares the elaborated information with all of the other tasks.

Fyr. Beginning from the information just received, the task executes
the ELBG block on the local cells . Let us remember that the aim of the
ELBG block is the testing (SoCAs) and the eventual execution (SoC)
of several shifting of codewords in order to obtain a better distribution
for them.

When the execution of the ELBG block has ended, the ith task calcu-
lates the new centroids for the local cells.

128

Afterwards, it shares the information that it has elaborated with all of
the other tasks and goes back to phase Fj.

The execution of phase F; (calculation of a portion of the Voronoi parti-
tion) is exactly the same as it was in PARELBG, while the realization of Fi;
is different. In fact, while in PARELBG, it was entirely (serially) executed
by the master, now each process manages a portion of the cells. It executes
the SoCAs and calculates the centroids only for its portion. The different
execution of Fyr is the main difference between PAUL and PARELBG.

In PAUL, like in PARELBG, the ELBG-block consists of the realization
of several SoCAs and their eventual transformation into SoCs. But, in PAUL,
SoCAs occur exclusively between local cells, i.e. cells assigned to the task
in question, allowing each task to work in total independence of other tasks.
However, such a solution is a limitation of the possibilities of shifting of
the codewords. This limitation was absent in the original ELBG and in
PARELBG, where SoCAs could occur between all the codewords of the whole
codebook. For this reason, in PAUL, a new technique (described later) has
been developed for making groups dynamic. So, a cell that at iteration n is
assigned to a group (task) , is, generally, assigned to another group (task)
at iteration n + 1. With this trick, codewords regain a greater freedom of
shifting in SoCAs.

The modifications made to the ELBG-block allow it to be efficiently exe-
cuted in parallel and, thanks to the creation of dynamic groups of codewords,
the algorithm obtained is a very good approximation of the original ELBG.
As we will see in Section 9.3, the results obtained by PAUL in terms of MQE
are very close to the ones obtained by ELBG, where cells are considered all
together rather than subdivided into groups. Of course, for N = 1, PAUL is
equivalent to ELBG.

9.2.3 Determining the portions

In the previous sub-section we said that each iteration of PAUL can be sub-
divided into two phases. We saw that, during phase F7, the process considers
only a portion of the input patterns while, during phase Fy;, it considers only
a part of the cells. Now, we analyze in detail both of these modes and report
some considerations about the problem of the load balancing deriving from
the partitioning methods adopted.

e Determining the input patterns to assign to each process. Before start-
ing the iterative phase, the master divides the input patterns into N
fixed portions and assigns a portion to each of the N processes. Such

129

an assignment is static because once the portion is assigned to a pro-
cess, it does not change any more. Portions are “fairly” determined by
imposing that each subset has the same number of elements. At most,
a difference of one element can occur if Np is not divisible by N.

Determining the cells to assign to each process. In this case we deal
with a dynamic assignment because the portions of cells pertaining
to each process change with iterations, the number of elements inside
each of them being constant. During the initialization, the master
assigns, statically and “fairly” (with the same meaning that the term
“fairly” has at the previous point), a number of cells to each process.
This information is transmitted to all of the other processes before
the iterative phase starts. So, each process knows how many cells
constitute the portions (its own and the others). The fixed assignment
concerns only the number of the cells constituting each group, while
the composition of such groups changes iteration by iteration. For this
reason we use the word “dynamic”. The generic task chooses the cells
constituting its group in an autonomous, random and correct way at
each iteration. Now, let us explain the meaning of such properties and
see how they have been satisfied.

— Autonomous. Each task determines autonomously its portion of
cells and the portions of the other tasks.

— Random. The random choice of the cells allows us to create, in
a stochastic way, dynamic partitions constituted by different ele-
ments at each iteration. This is useful for realizing the SoCAs in
a more efficient way, as explained before.

— Correct. The N portions always constitute a partition of the cells.

The three properties just mentioned are satisfied by means of a func-
tion generating pseudo-random numbers that each task initializes with
the same seed as the others. So, all of the tasks generate the same
sequence of numbers allowing each of them to determine the portions
in an autonomous, random and correct way.

Load balancing. By assigning the same number of input patterns (dur-
ing phase F7) and the same number of cells (during phase Fj;) to each
process, we try to effect the load balancing. As regards the (static)
partitioning of the input patterns, we, practically, reach a perfect bal-
ancing. In the other case (dynamic partitioning of the cells), generally,
this is not true because the cardinality of the cells is not constant, but,

130

on the contrary, it can be very different. Nevertheless, as we will see in
Section 9.3, the experimental results obtained are interesting.

9.2.4 Full procedure and inter-process communication

In this sub-section, we will detail with some points that we outlined in the
previous sub-sections. In particular, we will deal with the inter-process com-
munication both between the master and the slaves and between the slaves.

The master and its interaction with the slaves

During the initialization, the master spawns the tasks on the hosts, reads
the configuration and data files, (randomly) initializes the codebook and
determines the dimensions of the portions of the learning patterns and of the
cells. Afterwards, it transmits these data to the slaves and begins its iterative
phase, practically, consisting of the checking of the termination condition. In
this phase, the master waits, at each iteration, for the results related to the
distorsion from the slaves. Each slave, at the end of the calculation of the
Voronoi partition, transmits to the master the total distortion related to its
portion of input patterns. The master gets the total distorsion of the global
quantizer at mth iteration (D,,) by simply adding the values received from
the N slaves. If | (D, 1 — Dy,) | /D1 < €, the termination condition is
reached and the master terminates the algorithm by killing all of the slaves
and saving the results obtained. Otherwise, it waits for the results related
to a new iteration.

Communication between the slaves

Now, we will consider the data that are necessary for the tasks to be able
to correctly execute the operations constituting phases F; and Fj; of an
iteration and how these data have to be exchanged if we want to minimize
the inter-process communication.

e For the execution of phase Fj, each task needs to access its portion of
input patterns and all of the codebook.

The input patterns are read by the master from a file and are trans-
mitted, once and for all, to the tasks at the end of the initialization
operations.

The initial codebook is randomly and autonomously calculated by all of
the slaves. Afterwards, during phase Fj; of each iteration, they update
their portion of the codebook. So, it is necessary that the updatings

131

related to all of the portions are available to all of the tasks. Only in
this way, they can correctly execute phase F} of the following iteration.
For this reason, at the end of phase Fpy, every process communicates
to all of the others its updated portion of the codebook. Thus, each
process, by putting together all the of the pieces it receives, can obtain
the whole updated codebook.

In order to execute phase Fpy, each process needs to know:

1. which cells constitute its portion;
2. the codewords representing such cells;

3. which learning patterns constitute each of such cells.

Regarding point 1, we have already seen previously that each task can
autonomously and correctly determine the desired information.

Data related to point 2 can be accessed by the task without further
communications because it keeps in its memory all of the codebook,
that it used for executing phase F7.

On the contrary, the task cannot access all of the data indicated at point
3. Actually, it has in its memory all of the input patterns because they
were transmitted by the master before the beginning of the iterative
phase. Besides, it knows the portion of the Voronoi partition that it
calculated during Fj. Nevertheless, this is not enough for determining
which patterns constitute each of the cells to be considered during this
phase. This information is “distributed” among all of the tasks given
that, during the execution of F7, each of them calculated a piece of the
Voronoi partition.

A natural way of sharing such information could be that, at the end
of Fr, each task broadcasts the results related to the calculation of its
piece of the Voronoi partition to all of the other tasks. Nevertheless, we
said, previously, that the PVM does not have a real broadcasting func-
tion and it effects only a series of identical one-to-one transmissions to
the other tasks. As a similar solution would introduce a considerable
overhead to the communication process, we adopted a different strat-
egy by exploiting the fact that each task knows its portion of cells and
the portions of all the other tasks. So, at the end of F7, a task does
not transmit all of the information related to its portion of the Voronoi
partition to all the other tasks. Instead, it transmits a personalized
message to each of them containing only that piece of information in-
terests it.

132

Observation about the inter-process communication

In chapter 5 we saw that, in the serial version of ELBG, during the calcula-
tion of the Voronoi partition, several auxiliary arrays and matrices are filled
with values that are used subsequently for executing the ELBG block and
calculating the new centroids.

How do these data structures have to be filled in PAUL? A possible
solution could be to let each task fill a portion of the arrays and matrices and
to transmit such data to the other tasks. However, we, experimentally, saw
that it is better to transmit only the information related to the partitioning
of the input patterns (i.e. the pairs pattern-codeword) and to charge each
task with the calculation, from this information, of all the remaining data.

In this way, some more operations are required with respect to the serial
version for calculating the auxiliary information. However, considering the
bandwidth of our network, the time required for their execution is less than
the time required for transmitting such data from one task to another through
the network.

9.2.5 Memory management

The management of the physical memory of the single PEs is a very important
topic as regards the scalability of the algorithm.

As we saw previously, a task can correctly execute the ELBG block only
if it can access all of the patterns constituting the portion of cells assigned
to it. Such patterns change iteration by iteration and, so, in order to avoid
their retransmission every time, each process receives all of them before the
iterative phase starts and stores them either on a file or in its memory.

The choice of storing the patterns either on a file or in the physical mem-
ory depends on the related dimensions. In case the latter option is chosen,
each PE has to be able to store, besides the above-mentioned patterns, all
of the codebook (usually, of substantially smaller size than the input pat-
terns), all of the auxiliary arrays and matrices necessary to store information
to correctly execute the ELBG block (see [4]) and all of the data structures
necessary for the inter-process communication. Otherwise, the operating sys-
tem would need to manage the swapping of the memory on the disk with the
subsequent collapse of the performance of the whole algorithm [78]. Such a
solution, though very efficient from the computational point of view (when
enough memory is available), is a strong limitation to the scalability of the
algorithm for problems with high values of Np and k. It would be more
suitable if the maximum size of the problem to deal with is determined by
the total amount of memory available on the distributed system and not by

133

that available on the single PE.

For this reason, PAUL can work in two distinct modes according to
whether the physical memory of each PE is or is not enough to store all
of the data. In the former case there is no problem and all of the information
necessary to the execution of the algorithm are stored in the physical mem-
ory of each PE. In the latter case, a more complex strategy is adopted that,
however, allows the utilization of the aggregated resources also as regards
the memory. It is based on the use of a local file for the learning patterns,
dynamic management of the memory and dynamic loading of the patterns.
Now, let us describe the details related to this mode.

1. Local file for the learning patterns. Each slave of PAUL stores the input
patterns on a proper local file, i.e. a file stored on a local hard disk,
that it manages by itself.

2. Dynamic management of the memory. At each iteration, the memory
to store the data structures for the correct execution of the algorithm [4]
and for the inter-process communication is allocated when it is neces-
sary and deallocated when it is no longer needed.

3. Dynamic loading of the patterns. At each iteration, the patterns re-
quired are loaded from the file to the memory when it is necessary and
they are discarded when they are no longer necessary.

Points 2 and 3, at each iteration, introduce an overhead with respect to
the situation where the memory is allocated once and for all and all of the
patterns are permanently stored. So, this mode is adopted only when the
physical memory of the PEs is not enough to hold all the data. In that
case, the use of the file of the patterns directly managed by PAUL brings an
improvement with respect to the case when the complete management of the
memory is left to the operating system. To evaluate this benefit, we have
performed a test where the size of the data to be processed is considerably
greater than the available physical memory. In particular, using a data set of
about 70 MB, PAUL has been launched on a single PE of the MULTISOFT
machine that, we must remember, is endowed with 32 MB of physical memory
and a local hard disk. This can be used both by the operating system for
the management of the swapping of the memory and by PAUL for storing
its local file for the learning patterns. If the file for the learning patterns
managed by PAUL is adopted, the mean time required per iteration is about
159 s. While, if we try to store all the data in the memory of the PE (with
consequent swapping by the operating system), about 257 s per iteration are
required.

134

9.3 Results and comparisons with previous
works

In this section we propose the results obtained by PAUL. All of the tests have
been executed by using the RMSE as the distortion measure and ¢ = 0.001
as the threshold for the termination condition. Each of the results in this
section related to the performance of PAUL is the mean value of 10 runs.

9.3.1 Compression of large-sized images

The first test consists of the compression of a large-sized image. An in-depth
analysis of the results obtained is performed as regards both the final quanti-
zation error and the computational efficiency (number of required iterations
and speed up).

The image we chose is giraffe, a 256 gray-level picture of size 984 x 1488
pixels that we subdivide into 91512 square blocks, each of 4 x 4 pixels. If
we consider each of these blocks as a 16-dimensional vector, we get 91512
16-dimensional input patterns that we use for testing PAUL.

Table 9.1 reports the results when No and N vary. The following points
are important for the correct interpretation of the values.

e RMSE: it is the final error obtained by the quantizer and is considered
as a function of N¢ and N (RMSE(Ng, N)).

e ARMSE(%): it is the percentual increment of the RMSE with re-
spect to the value we would obtain when using the serial version of
the algorithm with the same number of codewords. It is equal to
100 x RMSE(N¢, N) — RMSE(Ng¢, 1)

RMSE(Ng, 1)

e NN;;: number of iterations.
e T': total execution time.

e S: speed up.

Analysis of the final quantization error

The analysis of Table 9.1 shows that ARMSE(%) is always below 4% and,
for a number of codewords greater than or equal to 64, it is below 1% while,
for No =32 and N = 16,20, ARMSE(%) is quite high. This is because, for
such values of N and N, SoCAs cannot be executed. In fact, for effecting

135

Ne | N | RMSE | ARMSE(%) | N; T s
T | 18.813 0.00 1.2 23.9 1.00
2 | 18.744 -0.37 12.1 16.9 1.41
32 4 | 18.791 -0.12 13.3 13.2 1.81
8 | 18.820 0.04 16.6 21.1 1.13
16 | 19.523 3.77 31.0 | 108.3 0.22
20 | 19.329 2.74 31.0 | 142.1 0.17
T | 15.928 0.00 12.3 115 1.00
2 | 15.969 0.25 12.4 26.3 1.58
64 4 | 15.937 0.06 13.5 22.7 1.83
8 | 16.027 0.62 14.7 34.9 1.19
16 | 16.055 0.80 17.8 60.9 0.68
20 | 16.068 0.88 17.1 65.3 0.64
T | 13.724 0.00 12.8 70.4 1.00
2 | 13.754 0.22 12.5 39.5 1.78
128 4 | 13.737 0.10 14.5 29.0 2.43
8 | 13.768 0.32 13.7 35.9 1.96
16 | 13.803 0.58 14.8 53.0 1.33
20 | 13.824 0.73 15.4 59.2 1.19
T | 11.973 0.00 12.3 | 119.8 1.00
2 | 11.983 0.08 12.6 65.7 1.82
256 4 | 11.988 0.12 12.6 41.7 2.87
8 | 11.995 0.18 12.6 37.8 3.17
16 | 12.010 0.31 13.1 48.5 2.47
20 | 12.019 0.38 13.8 55.1 2.17
T | 10.487 0.00 12.2 | 223.7 1.00
2 | 10.492 0.05 12.0 | 117.6 1.90
512 4 | 10.498 0.11 12.3 64.5 3.47
8 | 10.503 0.16 12.5 42.7 5.24
16 | 10.517 0.29 12.6 51.8 4.32
20 | 10.524 0.36 13.1 70.4 3.18
T 9.228 0.00 11.7 | 413.3 1.00
2 9.230 0.02 11.6 | 230.4 1.79
1024 | 4 9.244 0.17 11.9 | 140.6 2.94
8 9.244 0.17 12.0 78.8 5.24
16 | 9.247 0.21 12.2 55.0 7.51
20 | 9.253 0.27 12.3 55.4 7.46
T 8.078 0.00 12.1 | 1612.6 | 1.00
2 8.088 0.12 12.0 | 783.6 2.06
2048 | 4 8.096 0.21 12.3 | 401.6 4.02
8 8.109 0.38 12.0 | 207.6 7.77
16 | 8.115 0.46 12.3 | 1401 | 11.51
20 | 8.120 0.51 12.2 | 1355 | 11.90
T 6.937 0.00 13.6 | 4060.7 | 1.00
2 6.943 0.09 14.3 | 2138.2 | 1.90
4096 | 4 6.958 0.31 14.2 | 1089.1 | 3.73
8 6.967 0.44 14.6 | 570.8 7.11
16 | 6.990 0.77 13.8 | 323.6 | 12.55
20 | 6.997 0.87 13.2 | 2682 | 15.14

Table 9.1: Performance of PAUL with giraffe

a SoCA, three cells are necessary (see Figs. 4.4-4.7). But, for these values
of Nc and N, the “fair” distribution of the cells among the tasks gives at
most two cells to each of them and no SoCAs can be executed. In such cases,
PAUL works like PARLBG. In general, PAUL turns into PARLBG when
% < 2. However, we must remember that PAUL was developed for complex
problems with a high number of codewords. For such problems, even if PAUL
is, only approximately, the distributed realization of ELBG, we reach very
good results that negligibly differ from the values of RMSE obtained by the
original serial algorithm. Moreover, let us observe that, for No = 32 and
N = 2,4, ARMSE(%) is negative. This is because, for such a value of N,
the problem of local minima is not so considerable as for a higher value of
N¢ and, practically, for N = 2 or N = 4, PAUL works as well as ELBG. Any
small differences can be, mainly, ascribed to the stochastic processes inside

136

the algorithm (initialization of the codebook and selection of the cells for the
SoCAs).

In [3] it was highlighted, through several examples, that ELBG is prac-
tically independent of the choice of the initial codewords and that it works
well also by adopting a technique of random initialization. The results ob-
tained by PAUL (that uses the same technique of random initialization of
ELBG), very close to those of ELBG, show that it inherits from this the
same insensitivity to the initial conditions.

Analysis of the speed of convergence

In [3] the high speed of convergence of ELBG was highlighted, i.e. the low
number of iterations required for obtaining the final error. Now, we will
analyze the speed of convergence of PAUL and we will verify that its trend
is similar to that of ELBG.

In [3], many comparisons between ELBG and other techniques existing
in literature were presented. From a graph reported there, where LBG and
ELBG are compared, the error of the latter algorithm decreases fast and, in
a few iterations, reaches a value very close to the final result. Quantifying
the example cited, the RMSE obtained by ELBG after 3 and 4 iterations is
about 5% and 3% respectively greater than the final RMSE.

The analysis of Table 9.1 shows that the number of iterations required
by PAUL is very close to those required by ELBG except for the case with
Ne =32 and N = 16, 20, where the number of iterations required by PAUL
is considerably higher than ELBG (31 vs. 11.2). But, as we said previously,
in such cases PAUL degenerates into PARLBG. Otherwise, the values are
very close to those of ELBG. Besides, we have also verified that the trend
of the curves of the error versus the number of iterations is very similar for
PAUL and ELBG. For example, Fig. 9.2 reports the typical trends of such
curves for a run with No = 1024 for ELBG (solid line) and PAUL with
N =20 (dotted line). Practically, starting from the fourth iteration, the two
curves are indistinguishable.

Analysis of the speed up

The last column of Table 9.1 reports the values of the speed up obtained
by PAUL. Now, we will discuss them and, besides, we will propose a model
that, N¢ being fixed, allows us to calculate S versus N.

As we were expecting, the maximum value of the speed up that can
be achieved before saturation occurs increases when the complexity of the
problem (i.e. Ng, the data set being fixed) increases too. For the most

137

160

140 A

120 -

100 -

80

RMSE

60 -

40 -

20

1 2 3 4 5 6 7 8 9 100 11 12 13
Iteration number

Figure 9.2: RMSE versus iteration number for ELBG (solid line) and PAUL
for N =20 (dotted line)

complex problem considered (No = 4096), for N = 20, we obtain a speed
up of 15.14 corresponding to a saving in the computation time of about 93%
with respect to the serial case.

N¢ being fixed, we saw that the trend of S, when N varies, can be
well approximated by a law of the kind: S = aN™e ®N+eN*) The values
of a,b,c,m can be calculated by considering the logarithm of both of the
members of the equation and solving, by a linear least square routine, the
system of linear equations obtained substituting the points (i.e. the pairs of
values S and N) we wish to approximate.

For example, in Fig. 9.3 we can see the results of the interpolation effected
for No = 256. Because of the good level of approximation we reached in
all of the examined cases, we decided to use this method for estimating
the maximum value of S achievable also for the cases where the maximum
number of available PEs (/N = 20, in our case) had not produced saturation.
In Table 9.2, according to the law just reported, we show, as a function of N¢,
the maximum achievable values for S (Sy,.;) and the number of processors
(Nyae) for which such a value is obtained.

9.3.2 Comparison with PARLBG and PARELBG

In Table 9.3 we report the comparisons of the results obtained by PAUL
with the ones obtained by PARLBG and PARELBG. For the comparison,
we used the image of Lena [86] of 512 x 512 pixels. By subdividing it into
square blocks of 4 x 4 pixels, we get 16384 16-dimensional vectors. Because

138

NC=256
T T

Figure 9.3: Estimate of the speed up for No=256

NC Sma:v Nmax
32 1.84 3
64 1.78 3
128 | 2.38 Y
256 | 3.21 7
012 | 5.38 10
1024 | 7.58 18
2048 | 11.89 | 19
4096 | 21.98 | 47

Table 9.2: Maximum estimated speed ups vs the number of codewords

the image is not very wide, this is not a very complex task and, so, all of the
potential of PAUL cannot be highlighted.

However, we can see that, in terms of speed up, generally, PAUL gets
better results than PARELBG and worse than PARLBG.

As regards the quantization error, the performances of PAUL are much
better than PARLBG and slightly worse than PARELBG. Again, this is
another confirmation that, though PAUL only approximates the operations
executed by ELBG, the particular techniques adopted allow it to compete
with ELBG.

By analyzing Table 9.3, we can see that there is only a configuration
where the speed up of PAUL is worse than PARELBG: Ngs = 1024 and
N = 2. First of all, No = 1024 is the most complex problem we examined

139

PARLBG PARELBG PAUL
N¢ | N | RMSE S RMSE| S |RMSE | S
1]33.744 | 1.00 | 25.815 | 1.00 | 25.815 | 1.00
2 | 33.744 | 1.85 | 25.815 | 1.58 | 25.802 | 1.81
256 | 4 | 33.744 | 3.44 | 25.815 | 2.48 | 25.815 | 3.11
8 | 33.744 | 5.83 | 25.815 | 3.39 | 25.861 | 4.37
16 | 33.744 | 7.51 | 25.815 | 4.00 | 25.908 | 4.59
1 | 31.751 | 1.00 | 22.508 | 1.00 | 22.508 | 1.00
2 | 31.751 | 1.95 | 22.508 | 1.72 | 22.557 | 1.79
012 | 4 | 31.751 | 3.73 | 22.508 | 2.83 | 22.580 | 3.38
8 | 31.751 | 6.79 | 22.508 | 4.18 | 22.561 | 5.78
16 | 31.751 | 9.02 | 22.508 | 5.32 | 22.604 | 6.04
1 | 30.517 | 1.00 | 19.047 | 1.00 | 19.047 | 1.00
2 |1 30.517 | 1.98 | 19.047 | 1.84 | 19.037 | 1.74
1024 | 4 | 30.517 | 3.89 | 19.047 | 2.95 | 19.047 | 3.24
8 | 30.517 | 7.17 | 19.047 | 4.65 | 19.101 | 5.04
16 | 30.571 | 11.24 | 19.047 | 6.35 | 19.101 | 8.35

Table 9.3: Comparison of the results related to PARLBG, PARELBG and
PAUL

as regards the compression of Lena. In that case, also because of the low
value of N, the overhead introduced by the serial execution of the ELBG
block only slightly affects PARELBG. Such an observation is confirmed by
the high value of the speed up obtained by PARELBG (S = 1.84), that is
very close to the linear speed up (S = 2). However, when N increases, the
effect of the serial execution of the ELBG block is more and more evident
in PARELBG; so, PAUL outperforms PARELBG again as regards the speed

up.

9.3.3 Texture segmentation

In [78,100] an algorithm for large-scale parallel data clustering, named P-
CLUSTER, is presented. It is tested for problems of texture segmentation
by adopting a technique proposed by Jain and Farrokhnia in [13]. The initial
phases of this technique consist of a preliminary filtering of the image to be
segmented through a bank of Gabor filters and a subsequent elaboration of
the images coming out from the bank. In such a way, a certain number of
features are obtained for each pixel. The same authors suggest some criteria
for the choice of the number of features to consider. By associating the

140

corresponding vector of the features to each pixel of the image, the input
data set used for the final clustering is obtained.

Among the several tests reported in [78,100], we have considered the
ones executed with an image of 512 x 512 pixels (from the collection of
Brodatz [101]) containing 16 distinct textured regions. With the method
described above, 20 features per pixel are extracted from it and the patterns
so obtained are fed to the clustering algorithm having fixed No = 16.

As we have seen in Section 9.3.1, the performances of PAUL can be sensi-
bly worse than ELBG when, with such a low number of codewords (N¢ = 16),
a high number of tasks is used. So, we started to compare PAUL and P-
CLUSTER when running on a single node of their respective computing
system.

The tests in [78,100] were effected using two different systems:

e a (heterogeneous) collection of Sun Sparc workstations each with 32
MB of memory. With this system, the authors were not able to ob-
tain significant results when using less than 3 hosts. In fact, in such
cases, the physical memory available on each of them was not enough
to avoid the swapping of the memory on the local hard disk by the
operating system with subsequent collapse of the performance of the
whole algorithm.

e an IBM SP-2 supercomputer at Argonne National Laboratory. Each
node of the SP-2 is equipped with 128 MB of memory. In this case
the authors were able to execute the test also on a single machine.
For the problem described above, when using a series of techniques for
reducing the number of distance calculations, slightly more than 1000
S were necessary.

On the contrary, thanks to the particular expedients for the managing of
the memory previously described, the 32 MB equipping a Celeron 366 were
enough to make PAUL execute the same test in a total time of 143 s and
7 iterations on a single PE of the MULTISOFT machine. The final result
obtained was, practically, identical to the one obtained by P-CLUSTER.

So, in this case, PAUL outperforms P-CLUSTER as regards both the
quantity of memory required and the total execution time. We could think
that the drop in the execution time is, eventually, due to the increased power
of a Celeron 366 with respect to a host of the SP-2 (an IBM RS/6000 model
370 with a clock speed of 62.5 MHz). So, it is better to consider the com-
putational complexity of the two algorithms that, in agreement with the
authors of P-CLUSTER, we can identify as the number of distance calcula-
tions executed altogether. According to these considerations, we can perform

141

a comparison between PAUL and P-CLUSTER (when running on a single
node of the respective computing systems) with the help of the following
scheme.

e Number of distance calculations per iteration executed by LBG: Np x
Ne = 262,144 x 16 = 4,194, 304.

e Number of distance calculations executed altogether by P-CLUSTER
when none of the techniques for the reduction of their number are used
(pre-pruning): 2,926,000 thousand. This value is equivalent to about
698 LBG iterations.

e Number of distance calculations executed altogether by P-CLUSTER
when all of the techniques for the reduction of their number are used
(post-pruning): 213,400 thousand. This value is equivalent to about
51 LBG iterations.

e As we have previously said, the computational complexity of an ELBG
iteration is about 10 + 20% more than an LBG iteration. So, 7 PAUL
iterations (with N = 1) are equivalent, by rounding up, to about 9
LBG iterations.

By comparing the 9 LBG-equivalent iterations required by PAUL with
the 51 required by P-CLUSTER (post pruning), we can argue that PAUL
outperforms P-CLUSTER because of its better efficiency. Besides, thanks to
an efficient mechanism for the management of the memory, PAUL overcomes
P-CLUSTER also with a quarter of available physical memory.

As regards the speed up achievable for this problem, we performed more
tests by increasing the number of processes to a maximum value of N = 4.
In this case, we got, practically, the same error in 64 s and 8 iterations. The
speed up on the total computing time is 2.23. The value of N was not further
increased for keeping PAUL far from the threshold % = 2 when it turns into
PARLBG.

According to the considerations above, we believe that, also for those
problems that are not the ideal field of application of PAUL, i.e. problems
with a non-high number of codewords, it constitutes a valid alternative to
P-CLUSTER because of its better efficiency. In the case considered, even
though PAUL was launched for low values of N (max N = 4), it performed
better than P-CLUSTER! even when this was using 16 processors.

'Tt was rather difficult to quantify better the data related to P-CLUSTER because they
have been extrapolated from the graphs of the cited papers.

142

Besides, by analyzing the tables reported in [78,100], we can see that,
when the input data set is fixed, the number of distance calculations executed
by P-CLUSTER does not increase linearly with N¢, but it grows much faster.
For this reason, in our opinion, its use is prohibitive for the problems that,
on the contrary, constitute the ideal field of application of PAUL.

9.4 Conclusions and future works

In this chapter the authors have described and analyzed PAUL, an algorithm
for unsupervised learning that can be efficiently implemented on a parallel
computing system. It has been shown that, for complex problems with, at
the same time, a high number of patterns and codewords, PAUL obtains
good results as regards both the final quantization error and the achievable
speed up. Particular optimization techniques allow it to outperform other al-
gorithms for parallel data clustering also when dealing with problems outside
its ideal field of application.

Further studies provide for the extension of such a domain to complex
problems also with a low number of codewords. Besides, a more advanced
strategy of load-balancing will be studied in order to allow the use of hetero-
geneous computing systems whose hosts have different computing power.

Chapter 10

Conclusions and further studies

In this thesis several new algorithms for Cluster Analysis and Vector Quan-
tization have been presented with the unified denomination of techniques
for Unsupervised Learning. The techniques proposed have been classified as
belonging to one of the following three cathegories: traditional, incremental
and parallel algorithms for CA/VQ. For each of them, besides a detailed de-
scription, all of the considerations behind the new ideas have been explained.
One of the most important concept developed is the utility of a codeword,
that allows the algorithms considered to escape the situations of bad local
minima. Particular importance has been given to the the computational effi-
ciency of the algorithms. For this reason, greedy techniques and ad hoc data
structure have been employed. As regards the results, numerous compar-
isons with previous existing techniques in literature have been reported and
the new algorithms always outperform old ones. Besides, a chapter of the
thesis (chapter 7) has been devoted to give a wide description of the MULTI-
SOFT Machine, the computing system we built and used for implementing
the parallel algorithms developed. In particular:

e ELBG is a traditional technique for CA/VQ which, being the num-
ber of codewords fixed, finds a very good codebook. Its performance
are very good as regards both the speed of convergence and the final
quantization error;

e FACS is an incremental technique for CA/VQ which, being the target
error fixed, finds a codebook that is able to guarantee the desired target
error. Its performances as regards the quantization error and the speed
of convergence are similar to ELBG;

e PARLBG and PARELBG are a preliminary study about the possibility
of implementing parallel algorithms for CA/VQ on the MULTISOFT

143

144

Machine. They have given useful indications about which parts of the
traditional serial algorithms can be easily implemented on the MUL-
TISOFT Machine and which parts have to be modified. Starting from
these indications a new efficient parallel algorithm has been developed:
PAUL. It has obtained very good performances as regards both the
final quantization error and the speed-up with respect to the serial
algorithm of reference, i.e. ELBG.

Further studies will be addressed towards the following directions:

e utilization of different types of distorsions in order to allow a better
processing also for linear and elliptic clusters;

e improvement of the proposed parallel techniques, in order to allow the
extension of its domain to complex problems also with a low number
of codewords;

e development of a more advanced strategy of load-balancing for the
proposed parallel techniques in order to allow the use of heterogeneous
computing systems whose hosts have different computing power.

Chapter 11

Acknowledgments

I wish to thank Prof. Marco Russo of the University of Messina (Italy) for
his collaboration in the activities related to my research and for the valuable
suggestions about writing papers that have allowed me to improve consider-
ably the (still bad) quality of my writing. Besides, I wish to thank Andrea
Baraldi of the Joint Research Center, Ispra, VA (Italy) for his help in the
testing of FACS, in particular for having supplied me with his original code
of FOSART. Moreover, thanks to the Istituto Nazionale di Fisica Nucle-
are (INFN) - section of Catania, Istituto Nazionale di Fisica della Materia
(INFM) - section of Messina and Centro di Calcolo Elettronico - Universita
di Messina (CECUM) for funding the equipments constituting the MULTI-
SOFT Machine. Thanks also to Prof. Salvatore Cavalieri of the University
of Catania (Italy) for his cooperation in organizing the activities related to
the triennium of my Ph.D. Lastly, thanks to my colleague, Giuseppe Campo-
bello, for sharing with me the numerous extra-research charges of our work
and for giving me entertainment with his musical band and thanks to my
friend Giuseppe Blancato (called The Breadkmaker) for helping me in the
selection of the images to elaborate from his huge personal collection.

145

Bibliography

1]

M.Russo and G.Patane, “Improving the LBG Algorithm,” in Proc. of
IWANN’99 (J.Mira and J.V.Sénchez-Andrés, eds.), vol. 1606 of Lecture
Notes in Computer Science, (Barcelona, Spain), pp. 621-630, Springer,
June 1999.

G.Patane and M.Russo, “Comparisons between Fuzzy and Hard Clus-
tering Techniques,” in Proceedings of WILF’99, June 1999. in press.

M.Russo and G.Patane, “The Enhanced LBG Algorithm,” Neural Net-
works, vol. 14, pp. 1219-1237, Nov. 2001.

G.Patane and M.Russo, “ELBG implementation,” International Jour-
nal of Knowledge based Intelligent Engineering Systems, vol. 4, pp. 94—
109, Apr. 2000.

G. Patane and M. Russo, “Fully Automatic Clustering System,” IEEFE
Transactions on Neural Networks, submitted.

G.Patane and M.Russo, “Parallel Clustering on A Commodity Super-
computer,” in IJCNN 2000, Proc. of the IEEE-INNS-ENNS Int. Joint
Conf. on Neural Networks, vol. 3, pp. 575-580, 2000.

G.Patane and M.Russo, “Distributed Unsupervised Learning Using the
MULTISOFT Machine,” Information Sciences, in press.

G.Campobello, G.Patane, and M.Russo, “PAUL: a Parallel Algorithm
for Unsupervised Learning,” Neural Networks, submitted.

R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis.
New York, NY: John Wiley and Sons, 1973.

K.Fukunaga, Introduction to Statistical Pattern Recognition. 24-28
Oval Road, London NW1 7DX: Academic Press Limited, second ed.,
1990.

146

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

147

A. Jain and R. Dubes, Algorithms for Clustering Data. Prentice-Hall,
1988.

M. Amadasun and R. King, “Low-level segmentation fo multispectral
images via agglomerative clustering of uniform neighbourhoods,” Pat-
tern Recognition, vol. 21, no. 3, pp. 261-268, 1988.

A. Jain and F. Farrokhnia, “Unsupervised texture segmentation using
gabor filters,” Pattern Recognition, vol. 24, no. 12, pp. 1167-1186, 1991.

H. Frigui and R. Krishnapuram, “A robust competitive clustering al-
gorithm with applications in computer vision,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 21, pp. 450-465, May
1999.

R. Krishnapuram, H. Frigui, and O. Nasraoui, “Fuzzy and probabilis-
tic shell clustering algorithms and their application to boundary de-
tection and surface approximation,” IEFE Transactions on Fuzzy Sys-
tems, vol. 3, pp. 29-60, 1995.

M. C. Clark, L. O. Hall, D. Goldgof, L. P. Clarke, R. Velthuizen, and
M. S. Silbiger, “Mri segmentation using fuzzy clustering techniques,”
IEEFE Engineering in Medicine and Biology, vol. 13, no. 5, pp. 730742,
1994.

K.O.Perlmutter, S.M.Perlmutter, R.M.Gray, R.A.Olshen, and
K.L.Oehler, “Bayes Risk Weighted Vector Quantization with Posterior
Estimation for Image Compression and Classification,” IEEE Transac-
tions on Image Processing, vol. 5, pp. 347-360, Feb. 1996.

K. Mohiuddin and J. Mao, “A comparative study of different classi-
fiers for handprinted character recognition,” in Pattern Recognition in
Practice (E. Gelsema and L. Kanal, eds.), pp. 437-448, 1994.

J. Jolion, P.Meer, and S.Bataouche, “Robust clustering with applica-
tions in computer vision,” IEFEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 13, pp. 791-802, Aug. 1991.

R. Baeza-Yates, “Introduction to data structures and algorithms re-
lated to information retrieval,” in Information Retrieval: Data Struc-
tures and Algorithms (W. Frakes and R. Baeza-Yates, eds.), pp. 13-27,
Upper Saddle River, NJ: Prentice-Hall, Inc., 1992.

148

[21] S. K. Bhatia and J.S.Deogun, “Conceptual clustering in information re-
trieval,” IEEFE Transactions on Systems, Man and Cybernetics, vol. 28,
no. 3, pp. 427-436, 1998.

[22] G. Biswas, J. Weinberg, and C. Li, A Conceptual Clustering Method
for Knowledge Discovery in Databases. Editions Technip, 1995.

[23] C. Carpineto and G. Romano, “A lattice conceptual clustering system
and its application to browsing retrieval,” Machine Learning, vol. 24,
no. 2, pp. 95-122, 1996.

Y

[24] A. Jain, “Data clustering: A review,’
vol. 31, pp. 264323, Sept. 1999

ACM Computing Surveys,

[25] T. Bell, J. Cleary, and I. Whitten, Text Compression. Englewood Cliffs,
NJ: Prentice Hall, 1990.

[26] K.K.Paliwal and B.S.Atal, “Efficient Vector Quantization of LPC Pa-
rameters at 24 Bits/Frame,” IEEE Transactions Speech And Audio
Processing, vol. 1, no. 1, pp. 3-14, 1993.

[27] T.Lookbaugh, E.A.Riskin, P.A.Chou, and R.M.Gray, “Variable Rate
VQ for Speech, Image and Video Compression,” IEEE Transaction on
Communications, vol. 41, pp. 186-199, 1993.

[28] N. Nasrabadi and R. King, “Image coding using vector quantization: a

review,” IEEE Transaction on Communications, vol. 36, pp. 957-971,
1988.

[29] E.A.da Silva, D.G.Sampson, and M.Ghanbari, “A Successive Approxi-
mation Vector Quantizer for Wavelet Transform Image Coding,” IEFE
Transactions on Image Processing, vol. 5, no. 2, pp. 299-310, 1996.

[30] P.C.Cosman, R.M.Gray, and M.Vetterli, “Vector Quantization of Im-
age Subbands: A Survey,” IEEFE Transactions on Image Processing,
vol. 5, no. 2, pp. 202-225, 1996.

[31] H. Abut, Vector Quantization. New York: IEEE Press, 1990.

[32] Y.Linde, A.Buzo, and R.M.Gray, “An Algorithm for Vector Quantizer
Design,” IEEE Transaction on Communications, vol. 28, pp. 84-94,
Jan. 1980.

33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

149

A.Gersho, Digital Communications, ch. Vector Quantization: A New
Direction in Source Coding. North-Holland: Elsevier Science Publisher,
1986.

P. Chou, T. Lookabaugh, and R. Gray, “Entropy-constrained vector
quantization,” IEEE Transactions on Acoustics, Speech and Signal
Processing, vol. 37, pp. 31-42, 1989.

A.Gersho and R.M.Gray, Vector Quantization and Signal Compression.
Boston: Kluwer, 1992.

T.Hofmann and J. Buhmann, “Pairwise Data Clustering by Determin-
istic Annealing,” IEEFE Transactions on Pattern Analysis and Machine
Intelligence, vol. 19, pp. 1-14, Jan. 1997.

T. Hofmann and J. M. Buhmann, “Competitive learning algorithms for
robust vector quantization,” IFEE Transactions on Signal Processing,
vol. 46, no. 6, pp. 1665-1675, 1998.

B.Fritzke, “The LBG-U Method for Vector Quantization —an Improve-
ment Over LBG Inspired from Neural Network,” Neural Processing
Letters, vol. 5, no. 1, pp. 35-45, 1997.

D.Lee, S.Baek, and K.Sung, “Modified K-means Algorithm for Vector
Quantizer Design,” ITEEE Signal Processing Letters, vol. 4, pp. 2-4,
Jan. 1997.

M.R.Anderberg, Cluster Analysis for Applications. New York: Aca-
demic, 1973.

K. S. Al-Sultan, “A tabu search approach to the clustering problem,”
Pattern Recognition, pp. 1443-1451, 1995.

G. C. Osbourn and R. F. Martinez, “Empirically defined regions of
influence for clustering analysis,” Pattern Recognition, vol. 28, no. 11,
pp. 1793-1806, 1995.

F. Kowalewski, “A gradient procedure for determining clusters of rel-
atively high point density,” Pattern Recognition, vol. 28, no. 12, 1995.

A. B. Geva, Y. Steinberg, S. Bruckmair, and G. Nahum, “A comparison
of cluster validity criteria for a mixture of normal distributed data,”
Pattern Recognition letters, vol. 21, pp. 511-529, 2000.

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

150

H. Frigui and R. Krishnapuram, “Clustering by competitive agglomer-
ation,” Pattern Recognition, vol. 30, no. 7, pp. 1109-1119, 1997.

A. K. Jain, R. P. W. Duin, and J. Mao, “Statistical pattern recogni-
tion: A review,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 22, no. 1, pp. 4-37, 2000.

V. S. Cherkassky and F. M. Mulier, Learning from Data: Concepts,
Theory and Methods. John Wiley and Sons, 1998.

A. Baraldi and E. Alpaydin, “Constructive feed-forward ART cluster-
ing networks - Part II,” IEEE Transaction on Neural Networks, in
press.

J.C.Bezdek and N.R.Pal, “Two Soft Relatives of Learning Vector
Quantization,” Neural Networks, vol. 8, no. 5, pp. 729-743, 1995.

N.R.Pal, J.C.Bezdek, and R.J.Hathaway, “Sequential Competitive
Learning and the Fuzzy c-Means Clustering Algorithms,” Neural Net-
works, vol. 9, no. 5, pp. 787-796, 1996.

S. Ahalt, A. Krishnamurty, P. Chen, and D. Melton, “Competitive
learning algorithms for vector quantization,” Neural Networks, vol. 3,
pp. 277-290, 1990.

T. Kohonen, Self organization and associative memory. Berlin:
Springer Verlag, 3rd ed., 1989.

N.B.Karayiannis and Pin-I Pai, “Fuzzy Algorithms for Learning Vec-
tor Quantization,” IFEFE Transaction on Neural Networks, vol. 7,
pp- 1196-1211, Sept. 1996.

N.B.Karayiannis, “A Methodology for Constructing Fuzzy Algorithms
for Learning Vector Quantization,” IEEE Transaction on Neural Net-
works, vol. 8, pp. 505-518, May 1997.

N.R.Pal, J.C.Bezdek, and E.C.K.Tsao, “Generalized Clustering Net-
works and Kohonen’s Self Organizing Scheme,” IEEE Transaction on
Neural Networks, vol. 4, pp. 549-557, July 1993.

N.B.Karayiannis, J.C.Bezdek, N.R.Pal, R.J.Hathaway, and P.I Pai,
“Repairs to GLVQ: A New Family of Competitive Learning Schemes,”
IEEE Transaction on Neural Networks, vol. 7, pp. 10621071, Sept.
1996.

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

151

A.I.Gonzalez, M.Grana, and A.D’Anjou, “An Analysys of the GLVQ
Algorithm,” IEEE Transaction on Neural Networks, vol. 6, pp. 1012—
1016, July 1995.

N.B.Karayiannis and P.-I Pai, “Fuzzy Vector Quantization Algorithms
and Their Application in Image Processing,” IEEE Transactions on
Image Processing, vol. 4, pp. 1193-1201, 1995.

C.Chinrungrueng and C.H. Séquin, “Optimal adaptive K-Means Algo-
rithm with Dynamic Adjustament of Learning Rate,” IEFEE Transac-
tion on Neural Networks, vol. 6, pp. 157-169, Jan. 1995.

J. McQueen, “Some methods for classification and analysis of multi-
variate observations,” in Proceedings of the Fifth Berkeley Symposium
on Mathematical Statistics and Probability, pp. 281-297, 1967.

B. Fritzke, “Vector Quantization with a Growing and Splitting Elastic
Net,” in Proceedings of ICANN 93, 1993.

B. Fritzke, “Fast learning with incremental RBEF Networks,” Neural
Processing Letters, vol. 1, no. 1, pp. 2-5, 1994.

B. Fritzke, “Growing Cell Structures - A Self-organizing Network for
Unsupervised and Supervised Learning,” Neural Networks, vol. 7, no. 9,
pp. 1441-1460, 1994.

B.Fritzke, “A Growing Neural Gas Network Learns Topologies,” in
Advances in Neural Information Processing Systems 7 (G.Tesauro,
D.S.Touretzky, and T.K.Leen, eds.), pp. 625-632, MIT Press, Cam-
bridge Ma, 1995.

F. Hamker and D. Heinke, “Implementation and comparison of growing
neural gas, growing cell structures and fuzzy artmap,” Tech. Rep. 1/97,
Schriftenreihe des FG Neuroinformatik der TU Ilmenau, 1997.

T. Martinetz and K. J. Schulten, “A neural-gas network learns topolo-
gies,” in Artificial Neural Networks (T. Kohonen, K. Makisara, and O.
Simula, eds.), pp. 397-402, Amsterdam, 1991.

G.A. Carpenter, S. Grossberg, M. Markuzon, J.H. Reynolds, and D.B.
Rosen, “Fuzzy ARTMAP: a Neural Network Architecture for Incre-
mental Supervised Learning of Analog Multidimensional Maps,” IEEE
Transaction on Neural Networks, vol. 3, pp. 698-713, 1992.

[68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

[77]

152

S. Grossberg, “Adaptive pattern classification and universal recording;:
[.Parallel development and coding of neural feature detectors,” Biol.
Cybern., vol. 23, pp. 121-134, 1976.

A. Baraldi and E. Alpaydin, “Constructive feed-forward ART cluster-
ing networks - Part I,” IEEE Transaction on Neural Networks, in press.

L. Ni and A. Jain, “A vlsi systolic architecture for pattern cluster-
ing,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 7, pp. 80-89, Jan. 1985.

S. Ranka and S. Sahni, “Clustering on a hypercube multicomputer,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 2, pp. 129-137, Apr. 1991.

G. Rudolph, “Parallel clustering on a unidirectional ring,” in Trans-
puter Applications and Systems (R. G. et al., ed.), vol. 1, (Amsterdam),
IOS Press, 1993.

F. Ancona, S. Rovetta, and R. Zunino, “Parallel architectures for vector
quantization,” in Proc. IEEE Int. Conf. on Neural Networks, ICNN’97,
vol. II, (Houston,TX), pp. 899-903, June 1997.

N.K.Ratha, A.K.Jain, and M.J.Chung, “Clustering using a coarse-
grained parallel Genetic Algorithm: A Preliminary Study,” in IEEFE
Proc. of Computer Architecturs for Machine Perception, 1995.

I. Dhillon and D. Modha, “A data clustering algorithm on distributed
memory machines,” in ACM SIGKDD Workshop on Large-Scale Par-
allel KDD Systems, Aug. 1999.

B. Zhang, M. Hsu, and G. Forman, “Accurate recasting of parame-
ter estimation algorithms using sufficient statistics for efficient parallel
speed-up: Demonstrated for center-based data clustering algorithms,”

in 4th European Conference on Principles and Practices of Knowledge
Discovery in Databases (PKDD), Sept. 2000.

G. Forman and B. Zhang, “Linear speed-up for a parallel non-
approximate recasting of center-based clustering algorithms, includ-
ing k-means, k-harmonic means, and em,” in ACM SIGKDD Work-
shop on Distributed and Parallel Knowledge Discovery, KDD-2000,
(Boston,MA), Aug. 2000.

78]

[79]
[80]
[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

153

D. Judd, P. McKinley, and A. Jain, “Large-scale parallel data clus-
tering,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 20, pp. 871-876, Aug. 1998.

“http://www.top-500.o0rg.”
“http://www.ieeetfcc.org.”

S.P.Lloyd, “Least Squares Quantization in PCM’s.” Bell Telephone
Laboratories Paper, Murray Hill, 1957.

[.Katsavounidis, C.-C.J.Kuo, and Z.Zhang, “A New Initialization Tec-
gnique for Generalized Lloyd iteration,” IEEE Signal Processing Let-
ters, vol. 1, pp. 144-146, Oct. 1994.

J.C.Bezdek, “Pattern Recognition with Fuzzy Objective Function Al-
gorithms,” in New York: Plenum, 1981.

A.Gersho, “Asymptotically Optimal Block Quantization,” IEFEFE
Transaction Information Theory, vol. I'T-25, no. 4, pp. 373-380, 1979.

M.Russo, “FuGeNeSys: A Genetic Neural System for Fuzzy Modeling,”
IEEE Transactions on Fuzzy Systems, vol. 6, pp. 373-388, Aug. 1998.

D.C.Munson, Jr., “A Note on Lena,” IEEE Transactions on Image
Processing, vol. 5, p. 3, Jan. 1996.

A.Teseo and C.S.Regazzoni, “Application to Locally Optimum Detec-
tion of a New Noise Model,” in ICASSP’96, vol. 5, (Atlanta, Georgia),
pp. 24672470, 1996.

S. Z. Selim and M. A. Ismail, “K-means-type algorithms: A generalized
convergence theorem and characterization of local optimality,” IEEFE
Transactions on Pattern Analysis and Machine Intelligence, vol. 6,
no. 1, 1984.

B. Fritzke, “A self-organizing network that can follow non-stationary
distributions,” in Proceedings of ICANN 97, pp. 613-618, Springer,
1997.

B. Fritzke, “Some competitive learning methods,” tech. rep., Institute
for Neural Computation Ruhr-Universitat Bochum, 1997.

C. M. Bishop, Neural Networks for Pattern Recognition. Oxford:
Clarendon Press, 1996.

[92]

[93]

[94]

[95]

[96]

[97]

98]

[99]

[100]

[101]

154

E. B. Baum and K. E. Lang, “Constructing hidden units using ex-
amples and queries,” in Advances in Neural Information Processing
Systems 3 (R. P. Lippmann, J. E. Moody, and D. S. Touretzky, eds.),
pp- 904-910, San Mateo: Morgan Kaufmann, 1991.

K. J. Lang and M. J. Witbrock, “Learning to tell two spirals apart,”
in Proceedings of the 1988 Connectionist Models Summer School
(D. Touretzky, ed.), pp. 52-59, San Mateo: Morgan Kaufmann, 1989.

S. E. Fahlman and C. Lebiere, “The cascade-correlation learning ar-
chitecture,” in Advances in Neural Information Processing Systems 2
(D. S. Touretzky, ed.), pp. 524-532, San Mateo: Morgan Kaufmann,
1990.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sun-
deram, PVM 8 Users’s Guide and Reference Manual. Engineering
Physics and Mathematics Division, Mathematicals Sciences Section,
1994.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sun-
deram, PVM & Users’s Guide and Tutorial for Networked Parallel
Computing. Massachussets Institute of Technology, 1994.

F.H.Bennet III, J.R.Koza, J.Shipman, and O.Stiffelman, “Building a
Parallel Computer System for $18,000 that performs a Half Peta-Flop

per Day,” in Proceedings of the Genetic and Fvolutionary Computation
Conference (GECCO ’99), 1999.

J. Hennessy and D. Patterson, Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, Jan. 1996.

T. Dunigan and K. Hall, “Pvm and ip multicast,” Tech. Rep.
ORNL/TM-13030, Computer Science and Mathematics Divsion, Oak
Ridge National Laboratory, 1996.

D. Judd, P. McKinley, and A. Jain, “Computational pruning techniques
in parallel square-error clustering of large data sets,” Tech. Rep. MSU-
CPS-96-02, Dept. of Computer Science, Michigan State Univ, East
Lansing,Mich., 1996.

P. Brodatz, A Photographic Album for Artists and Designers. New
York: Dover, 1966.

