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Abstract

In this paper we describe the implementation of the ELBG, a clustering technique we developed as an
improvement on the traditional LBG algorithm. It tries to solve the problem of the local minima deriving
from a bad choice of the initial conditions. In a previous paper, we described in depth this technique
and some points were highlighted. (a) It performs better than or equal to all of the other algorithms we
considered. (b) The final result is virtually independent of the initial conditions. (¢) No parameters have
to be tuned manually (d) Fast convergence. (e) Low overhead with respect to the traditional LBG. The
aim of this paper is to describe the particular solutions we adopted to obtain such results at the cost of

a low overhead with respect to the traditional LBG.

I. INTRODUCTION

Vector quantization (VQ) and, more general-
ly, unsupervised learning (or clustering), are em-
ployed in several fields. Among them, we have
speech compression [1], image compression [2],
pattern recognition [3] and computer vision [4].

Several approaches to clustering exist in litera-
ture, both of the fuzzy type [5], [6] and of the hard
type [7], [8]. Moreover, both of these kinds of algo-
rithms can be further subdivided in c¢-means tech-
niques [7], [5] and competitive learning techniques
[8], [9], [6]. Some authors [6], [10] say that fuzzy
algorithms are less sensitive to initial conditions
than hard ones. This is true if we consider the
Generalized Lloyd Algorithm (GLA) [7], a hard c-
means technique, known also as LBG (from the
initials of its authors). In [11] and [12], we ana-
lyzed the reasons for such a strong dependence on
the initial conditions and we proposed our solution
that we called Enhanced-LBG (ELBG). The EL-
BG was inspired by the traditional LBG (therefore
it is a hard c-means technique) and some improve-
ments were made where it had weak points. In [11]
and [12], the ELBG was described in depth and its
performances were analyzed through several com-

parisons with other algorithms. Some points, in
particular, were highlighted. (a) Its performances
are better than or equal to performances obtained
by all of the other algorithms we considered. (b)
The final result is virtually independent of the
initial conditions. (¢) No parameters have to be
tuned manually (many fuzzy techniques do). (d)
Fast convergence. (e) Low overhead with respect
to the traditional LBG.

The aim of this paper is to describe the particu-
lar solutions we adopted to keep the overhead low
(below 5 %, as we said in [11]) with respect to the
traditional LBG. Particular prominence is given to
the tricks (regarding the logic structure of the al-
gorithm, the data structure and the technique for
accessing the data) that allowed us to obtain such
a result.

The paper is organized as follows: first, some
general definitions about VQ are given; afterward-
s, the LBG and a possible implementation of it are
presented; then, we describe the ELBG and its im-
plementation. Lastly, some results are presented.



II. VECTOR QUANTIZATION
A. Definition

The objective of VQ is the representation of a
set of feature vectors x € X C RX by a set, Y =
{¥1,. YN}, of No reference vectors in R€. Y
is called codebook and its elements codewords. The
vectors of X are called also input patterns or input
vectors. So, a VQ can be represented as a function:
q: X — Y. The knowledge of ¢ permits us to
obtain a partition S of X constituted by the N¢
subsets S; (called cells):

Si={xeX:qx) =y} i=1,....Ne (1)

B. Quantization Error (QE).

The QE is the value assumed by d(x, ¢(x)),
where d is a generic distance operator for vectors.
The mean QE (MQE), in the case that X is con-
stituted by a finite number (Np) of elements, is:

MQEED({Y,S}) = _Zd(xpvQ(Xp)):

where we indicate with D; the ith cell total distor-
tion:

Di: Z d(xn;Yi) (3)

n:x, €S;

Several functions can be adopted as distortion
measures [7]. The most widely adopted is the Eu-
clidean distance and we will use it in this paper.

III. LBG AND ITS IMPLEMENTATION

In this section we will briefly introduce the LBG
algorithm. After, we will describe how we imple-
mented it.

A. LBG description

LBG was proposed in 1980 [7] by Linde, Buzo
and Gray and its original name was Generalized L-
loyd Algorithm (GLA) because it extended the L-
loyd’s technique [13] from mono- to k-dimensional
cases. The name LBG comes from the initials of
its authors. It is an algorithm, that, at every iter-
ation, generates a quantizer whose MQE is less or
equal to the previous one. This is the result of a
process where two necessary conditions for obtain-
ing an optimal codebook are alternatively verified.
They are:

o Nearest Neighbor Condition (NNC). Giv-
en a fixed codebook Y, the NNC consists in as-
signing to each input vector the nearest codeword.

So, we divide the input data set in the following
manner:

gi = {X € X: d(X7Yi) S d(X7Yj)7

j=1,.,Nc, j#i} i=1,..,No(4)

The sets S; just defined, constitute a partition of
the input data set. This is the “Voronoi Partition”
[14] and is referred to with the symbol P(Y) =
{S1,-++,SNn.}. It is possible to demonstrate that
the Voronoi partition is optimal [7], i.e. for every
partition S of the input data set, it holds:

D({Y,S}) > D({Y,P(Y)}) ()

o Centroid Condition (CC). Given a fixed par-
tition S, the CC concerns the procedure for finding
the optimal codebook. This is the codebook con-
stituted by the centroid of each cell [7].

If we consider the set A C R¥ constituted by N
elements and the Euclidean distance is adopted,
its centroid X(A) is:

%(A) = NLA 3 x (6)

xEA

If we take the codebook X (S8) constituted by the
centroid of all the cells of S:

it is optimum [7], i.e. for every codebook Y, it

holds:

D{Y,8} > D({X(S),S}) (8)

So, we can quickly identify the steps through which
the LBG develops as follows:

1. initialization;

2. partition calculation according to the NNC (4);
3. termination condition check;

4. new codebook calculation according to the CC
(7);

5. return to step 2.

A complete description of these steps will be given
in the section concerning the LBG implementa-
tion.

B. Notation

Before we begin the description of our imple-
mentation of the LBG, we briefly explain the nota-
tion we adopted. We wrote our routines in ANSI-
C and, for this reason, from now on, we will use a
C-like syntax to describe many procedures. This
could be a problem when we have to effect some



operations with matrix because of the several nest-
ed for loops needed to scan the data. So, the
operations related to arrays and matrices will be
described with a Matlab-like syntax, too.

B.1 Terminology

In the rest of the paper, we will use several ma-
trices, arrays and scalars to store the data and we
tried to give a meaningful name to each of them.
Generally, their names are constituted by letters
whose meaning is the following;:

o P: patterns

o C: codebook (or, cell, depending from the con-
text)

e N: number

o S: sum

o I: index

« D: distortion

o G: group

o H: hyperbox

¢ Un: united

o Sp: split

According to this notation, IC' is the abbreviation

for Index cell, N PC' stands for Number of Patterns
in the Cell, and so on.

Sometimes, we will substitute the expression
“pattern belonging to the cell ¢” with the short-
er term “j-pattern”.

B.2 Matrices, arrays, constants and scalars

Matrices, arrays and constants are indicated in
upper case, scalars in lower case. Sometimes, we
wish to highlight the dimensions of a matrix or
an array. In such cases, the dimensions are put
in brackets, just after the name of the matrix or
the array in question. For example, C'(N¢, K) is
the matrix containing the codebook and it has N¢
rows and K columns. If we specify only one di-
mension, than we are referring to a column ar-
ray. According to this convention, the array A,
constituted by N elements, A(N), is equivalent to
the matrix A(N,1). Later, we will also use tri-
dimensional matrices. For example, H(N¢, K, 2),
is a tri-dimensional matrix whose dimensions are
Ne, K, 2, respectively. Dimensions will be omit-
ted when they are not considered to be important
for improving the understanding of the context.

Single elements, rows or columns of a matrix
are indicated with a Matlab-like notation. Some
examples:

o A1(2,3)[1,2] is the first row and second column
element of the matrix A1. This matrix has 2 rows
and three columns.

o A1(2,3)[:,2] is the second column of Al and
A1(2,3)[1,:] is the first row.

B.3 Matrix operators

Matrix operators are taken from the Matlab no-
tation, too:
o operators for the sum and the subtraction of ma-
trices with the same dimensions;
o operators for the product of a matrix and a s-
calar;
o operators for the division of a bi-dimensional
matrix by an array. For example, A42(3,2)./A3(3)
is a matrix with 3 rows and 2 columns obtained
from A2 and A3 so that its ith row is the ith row
of A2 divided by the ith element of the column
array A3.

B.4 Special matrices

e zeros(r,c) is the matrix with r rows and ¢
columns whose elements are all zeros. In a similar
way, the array zeros(r) is defined.

e rand(r,c) is the matrix with r rows and ¢
columns whose elements are randomly chosen. In
a similar way, the array rand(r) is defined.

e infty(a,b,c) is the tri-dimensional matrix of di-
mensions a, b, ¢, respectively whose elements are
all 4o0.

o false(r) is the boolean array where all of the
elements are false.

B.5 A brief recall of the C notation

e @+ + is equivalent to a = a + 1;

e a+ = b is equivalent to a = a + b;

e for(;;) stands for an infinite loop;

o break is the condition for exiting from a loop.

C. Implementation

In our implementation of LBG, we store the Np
patterns in the matrix P(Np, K) where each row
contains a learning pattern. The N¢ codewords
are stored in the matrix C(N¢, K). Besides, we
put the sum of the patterns belonging to the same
cell in S(N¢, P) and we use the array NPC(N¢)
to store the number of patterns belonging to each
cell. m is the counter of the iterations and D, is
the total distortion at the mth iteration as given
by eq.(2). Several techniques for calculating an
initial codebook exist [7] but, in this paper, we are
not interested in this phase. Therefore, we assume
that a random choice of the initial codewords is
enough for starting-up the algorithm. According
to our symbology we can briefly describe the LBG
as follows.

The LBG algorithm

// Let Cyp be the initial codebook and

// € > 0 the precision of the optimization
// process. A typical range of values for
// € is [0.001,0.1].



C = Co;
Dy = +o0;
m = 0;
for(;;) // an infinite loop begins
{// Initialization of matrices and arrays
S = zeros(N¢, K);
NPC = zeros(N¢);
D = zeros(N¢);
D,, = 0;

// Voronoi partition calculation
for(j =1;j <= Np;j ++)
{i=index of the nearest codeword to P[j, ]
NPCli]+ +;
Sli,:]+ = P[j,;
}Dm+ = d(P[]y :]7 C[Zv :]);

// Termination condition check
%/ Dm—1—Dm
if(Frp—" <e)

break:;m// exit from the for loop

// New codebook calculation
C =S./NPC,
}

IV. THE ENHANCED LBG

In this section, we will summarize the consider-
ations we made in [11] about the LBG and how
they led us to the development of the ELBG. It
is, essentially, a traditional LBG where a new step
(the ELBG block) has been inserted between the
Voronoi partition calculation and the calculation
of the codebook verifying the CC. Its main func-
tion is to identify the possible situations of local
minima and to remedy them. In particular, some
sub-optimal solutions were adopted in order to
keep the overhead introduced by the ELBG block
low. Good results were achieved, experimentally,
as reported in [11].

A. From LBG to ELBG

Often, the LBG converges towards a quantizer
far from the optimum as the consequence of the
law regulating the codewords adjustment [11]. In
fact, they can “move” only through contiguous re-
gions and, often, a bad initialization leads to a
bad final quantizer because of this limitation in
the codewords’ movements. So, it is possible that
the LBG produces a quantizer where empty cells
are present, above all when large codebooks are
used. However, it is easy to identify such a situ-
ation and we could, for example move the unused
codeword inside a cell that is not empty, as pro-
posed by the same authors of the LBG [7]. But,
a more serious problem occurs when we are in a
situation similar to the one depicted in Fig. 1(a).
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Fig. 1. (a) A situation where the codewords are badly
distributed. The arrow indicates a possible solution.
(b) A better distribution.

This configuration shows two clusters of patterns
and three codewords. In the little cluster there are
two codewords whereas, in the other, only one. For
a similar distribution, the opposite situation would
produce better results. But, neither the codeword
i nor [, can move towards the big cluster. In [11],
we developed a criterion to identify these situa-
tions and to allow the codewords to move without
any contiguity limitation. The result we would like
to obtain is depicted in Fig. 1(b). In the follow-
ing, we will explain how such shiftings are realized.
The criterion we adopted is based on the concept
of “utility of a codeword (cell)” and we will explain
it later on. Fritzke [15] used the term wutility be-
fore our work, but, in our algorithm, its meaning
is totally different.

B. Distortion equalization and utility

The idea of the utility was suggested to us by
one of Gersho’s theorems [16] where he explained
his partial distortion theorem [17] saying: “Fach
cell makes an equal contribution to the total distor-
tion in optimal vector quantization with high res-
olution”. Gersho’s theorem is true when certain
conditions are verified (according to [17], a high
resolution quantizer has a number of codeword-
s tending to infinite). But, in [18], experimental
results proved that it maintains a certain validi-
ty also when the codebook has a finite number of
elements. So, we introduce a new step inside the
LBG to pursue the equalization of the total distor-
tions of the cells (D;). In this context, we define
the “utility index” of the ith cell as the value of D;
normalized with respect to its mean value (Dmean)-
In formal terms:

Nc¢
1
Dmean = N_C Zz:; Di (9)



D;

Dmean

U; = i=1,..,Nc (10)

In the following, we will, indifferently, use the
terms utility index of a cell and utility index of
a codeword. Their meaning is equivalent because
equations (9), (3), (10) can be used only if a cell
is considered together with the related codeword
and vice versa. Often, we will use only the shorter
expression “utility”. In terms of this new quantity,
Gersho’s theorem says that, in an optimal quan-
tizer with high resolution, all the cells have utility
equal to 1.

According to the definition, an empty cell has
utility 0, i.e. it is useless. Besides, in Fig.1(a) both
of the codewords in the little cluster have utility
less than 1, while the one in the big cluster has
utility more than 1.

Our idea is to obtain the desired equalization by
joining a low-utility (lower than 1) cell with a cell
adjacent to it. At the same time, we split a high-
utility (higher than 1) cell into two smaller ones.
So, it is the same as if we move the low-utility
codeword inside the high-utility cell. It is possi-
ble that a better distribution, with the utilities
more equalized, could arise from this move. The
term could means that we are not sure that such
a movement produces a real benefit. In fact, we
must remember that our primary objective is the
MQE minimization. So, we only make this change
effective when we are sure that it produces a mean
distortion decrease. In the next subsections we will
describe how this evaluation is effected.

C. ELBG steps

The steps through which the ELBG develops are
the same as the LBG with the addition of a new
one. It is called ELBG block and is put between
the termination condition check (point 3 of the L-
BG) and the new codebook calculation (point 4 of
the LBG). Its main function is the testing of sev-
eral Shift of Codewords Attempts (SoCA’s). For
each SoCA, we try to shift a low utility codeword
inside a high utility cell, according to the consider-
ations of the previous subsection. If this produces
a decrease in the MQE, then the SoCA is con-
firmed and we say that a Shift of Codeword (SoC)
is executed. Otherwise, the shift is discarded.

In this paper we will not deal with the initializa-
tion of the codebook. In fact, in [11], we showed
with several examples that the ELBG is practi-
cally insensitive to the initial choice of codewords.
Therefore, a random initialization of the codebook
is sufficient to start up our algorithm. We distin-
guish the following steps:

1. initialization;
2. partition calculation according to the NNC (4);

3. termination condition check;

4. ELBG block;

5. new codebook calculation according to the CC
(7);

6. return to step 2.

In the next subsection we will briefly summa-
rize which operations are executed by the ELBG
block.

D. The ELBG block

Inside the ELBG block, several SoCAs are ex-
ecuted. Each SoCA involves three cells: the first
has utility lower than 1, the second is a cell ad-
jacent to the first one and the third is a cell with
utility greater than 1. The two adjacent cells are
joined to form a single cell. The one with utility
greater than 1 is split in two parts. If these op-
erations produce a lower MQE, then the SoCA is
confirmed and it becomes a SoC. Otherwise, it is
discarded and we try a new one.

When a codeword is moved from one region to-
wards another region, we should evaluate how this
operation reflects on the MQE by the recalcula-
tion of the Voronoi partition. But, this is a time-
consuming operation and we wish to avoid its exe-
cution at every SoCA. In fact, we try many SoCAs
for each iteration and such a solution would be too
expensive. So, we adopt a sub-optimal solution
that is based on the locality of the operations. We
mean that, for each SoCA, only a portion of the
codewords, cells and input vectors are involved,
while the remainder are not considered in any way.
This is sub-optimal because a whole redistribution
of the data could produce better results but, in
this way, we introduce a negligible overhead to the
traditional LBG and we can try many SoCAs for
each iteration. However, the results are good, as
we showed in [11].

The ELBG block consists in the iterated repeti-
tion of the following steps:

1. termination condition check and selection of
three cells;

2. SoCA;

3. estimation of the new MQE;

4. SoC (only if MQE is lowered by the SoCA);

5. return to point 1.

D.1 Termination condition and selection of cells

To execute a SOCA we need three cells (see Fig.
1(a) for an example). They are:
o the ith cell (S;): a cell with utility lower than 1;
o the Ith cell (S;): the cell whose codeword (y;)
has the minimum distance from y;;
« the pth cell (Sp): a cell with utility greater than
1.

S; is searched for in a sequential manner. We
mean that, for the first SOCA, we start from the
beginning of the codebook and, when we find a



codeword whose utility is less than one, we choose
it. Afterwards, we look for the other two cells
(S; and Sp) that are needed. At the next SoCA,
we continue the search for another cell S; from
the point where we stopped previously, and so on.
When we reach the end of the codebook, the ter-
mination condition is verified and we try no more
SoCAs for that iteration of the ELBG.

Instead, S, is looked for in a stochastic way.
The method adopted sounds like the roulette wheel
selection in genetic algorithms [19]. In practice, we
choose a cell with a probability P, proportional to
its utility value. In mathematical terms:

Up

P==——""——
P Eh:Uh>1 Un

(11)

In the section regarding implementation, we will
see that the criterions we adopted for the selection
of cells are a bit more complex than these. Howev-
er, the description given here is enough to explain
the remainder of the algorithm.

D.2 SoCA

In this step, we will describe how a SoCA is

performed and we will refer to Fig. 1 as a simple
bi-dimensional example. In Fig.1(a) the three cells
Si, S and S, previously identified are represented.
We must split the big cell S, in two smaller cells
and join S; and S; to form a bigger cell. This is
effected by shifting y; near y, and executing some
local rearrangements.
o Splitting. We said that we shift y; near y,.
But, what does near mean 7 We know that a finite
number of k-dimensional vectors forms the input
data set. So, we can say that .S}, is contained inside
k-dimensional hyperbox I,

I, = [T1m, 21v] X [Tom, Tam] X oo X [Thm, Tim]
(12)

where x5, and zp\ are respectively the minimum
and maximum value assumed by the hAth dimen-
sion of all the patterns belonging to S,. From
this consideration, we place both y; and y, on the
principal diagonal of I,; in this sense, we can say
that the two codewords are near each other.

The exact positions are illustrated in Fig. 2. The
situation of Fig. 2 can be easily generalized to a
K-dimensional problem. Afterwards, a rearrange-
ment of y; and y, is executed by means of a lo-
cal LBG where only the patterns belonging to the
old S, constitute the input data set and the two
codewords on the principal diagonal are the initial
codebook. By choosing a high value for e (typi-
cally 0.1 + 0.3), in a few iterations (one or two)
the local LBG ends. In Fig. 1(b) we can see the

O
bia O
y O

b/4

Fig. 2. The hyperbox containing S, (I) and the position
of the codewords on the principal diagonal of I.

result of this operation where the two new code-
words (y}, y;,) and the two new cells (S},5},) are
reported. This solution does not assure the best
rearrangement because we did not consider in any
way either the other codewords or the other input
patterns. But, the locality of operations spares us
the recalculation of the Voronoi partition. A lot of
experimental trials have shown the validity of the
method.

e Union. After the codeword y; has been moved
away, we add all of the patterns belonging to the
old cell S; to S; and we place y; in the centroid of
the cell so obtained. The result of this operation
is reported in Fig. 1(b). In symbols:

[ .
{ SI=5US;; 13)

y; = %(5})

Also in this case we adopt a sub-optimal solution
because the recalculation of the Voronoi partition
for the whole input data set could produce a better
result. However, our method has a much lower
computational effort.

D.3 Mean Quantization Error estimation

After the shift, we have a new codebook (YY)
and a new partition (S'). Therefore, by applying
eq.(2), we can calculate the new MQE. If it is lower
than the value we had before the SoCA, this is
confirmed, i.e. it turns into a SoC. Otherwise it
is rejected. As only three cells and the related
patterns are involved in the SoCA, we can effect
the new MQE calculation focusing our attention
only on the old three cells S;, Sp, S;, and the three
new ones S;, S,,, S;. The following symbols will be
used:

e d,q is the total distortion of the three considered
cells before the shift:

doia = D; + Dy + D, (14)

o dpew is the total distortion of the three consid-
ered cells after the shift:

dnew = D} + Dy + D, (15)



D.4 SoC

If dpew < doiq we turn the SoCA into a SoC. It
consists in the substitution of the new codewords
(¥i» ¥1, ¥p) and the new cells (Sj, S;, S,) in the
old codebook and partition respectively. In our
example, this happens by confirming the situation
of Fig. 1(b). If dpew > doig the whole SoCA is
discarded.

V. ELBG IMPLEMENTATION

A more complex data structure than the one
adopted to implement the traditional LBG is re-
quired to execute the operations constituting the
ELBG block (point 4 of the ELBG).

First of all, for each pattern, we have to store
the index of the cell to which it is assigned. This
is needed because, when we want to effect a SoCA,
all of the patterns belonging to the cells involved
in the operation have to be identified. Such in-
formation is kept in the array IC(Np). We al-
so have to store the utilities of all cells. How-
ever, in order to save time, we avoid the nor-
malization according to (10) (division by Dmean)
and we store the total distortion of each cell di-
rectly in the array D(N¢). The correct execu-
tion of a splitting implies knowing which hyper-
box holds the cell in question. For this reason
we use the three-dimensional matrix H(N¢, K, 2).
In Hc,k,1] there is the smallest kth coordinate
of all c-patterns. Similarly, H[e, k, 2] contains the
biggest kth coordinate of all c-patterns. All of the
arrays and matrices just defined are filled at the
same time that the Voronoi partition is calculated
(point 2 of the ELBG).

A. Rearrangement of the patterns

The execution of the SoCAs (inside point 4 of
the ELBG) implies a high number of accesses to
the matrix of the patterns (P). Particularly, given
the index of a cell, we need to locate all of the
patterns belonging to it. In order to increase the
efficiency of our implementation of the ELBG, we
developed a method that, subject to preliminary
sorting, allows us to quickly access the required
elements of the matrix P.

The technique of sorting we implemented con-
sists of the rearrangement of P so that the patterns
belonging to the same cell form clusters. More pre-
cisely, we try to obtain a situation where all of the
patterns belonging to the same cell are, generally,
in subsequent rows of P. We underline the word
generally because, as we will see later, after the ex-
ecution of a SoC, the organization that we briefly
described, can be slightly modified.

P IC

1 Patt; 3

2 Patt, V' 4

NPC 3 Patts V4
7 3 4 Patt, F4
2 2 5 Patts 7
3 1 6 Pattg 5
4 3 7 Patt; 7
5 1 8 Pattg V4
9| Patty z

10 Pattyq 2

Fig. 3. An example with 10 patterns and 5 codewords.
This is the situation of the matrices P, IC and NPC
after the calculation of the Voronoi partition.

In Fig. 3 the situation of the patterns before sort-
ing is depicted, practically how it is at the end
of the Voronoi partition calculation. Here, and in
the figures that follow, we adopt a different type
of font when we refer to the indices related to pat-
terns or to the indices related to cells. After the
sorting of the data has been effected, the situation
appears as in Fig. 4.

P IC

Patts P 4

NPC  IP 2| Patt z
7 3 1 3 Patty b 4
z 2 2 _,-> 4 Patt, Z
1 6 5 Patt,q 2

5 1 10 _\—>7 Patt, V4
8 Pattg V4

9 Patt; V4

Llo Patts 5

Fig. 4. The same matrices of Fig. 3 are reported after
the rearrangement proposed. We can see that all of
the patterns belonging to the same cell are stored in
consecutive rows of P. The vector IP is reported, too.

We see how the patterns belonging to the same cel-
1 are stored in subsequent locations and that the
structure is sorted according to increasing values
of the field IC. In the same figure, a new array
appears: [P(N¢). Each element of it contains the
index of the row where the patterns belonging to
the cell in question begin. Such values are calcu-
lated from N PC because we know that the pat-
terns belonging to cell 1 begin at row number 1,
after there are all of the patterns of cell 2, and so
on. Even if it could appear superfluous, I P allows
quicker access to the data to be considered. In fac-
t, given the general ith cell, we can immediately
say that it is constituted by N PC[i] patterns and
that they are consecutively stored in P starting
from the position IPJi].

B. The technique employed for the rearrangement

As for the rearrangement of the data, we tried to
reduce the number of computer memory accesses



@ [ m [1][2] 3] [s][e]
© [1[E m [1][2][3]] I[s][6][7]
® [1] © [1][2] [3][4][5][6] [7]
(g)

flip

Fig. 5. Example of rearrangement.

and data movements. For this reason, we mini-
mize the number of shiftings of the patterns by
operating with their indices. We must remember
that, generally, the dimensionality of the pattern-
s is greater, or much greater, than two (K > 3).
Working with indices implies that each pattern is
moved once. Regarding the indices, we adopted
a technique that needs a single shift for each of
them. The comparisons to be effected have a lin-
ear complexity, too.

In order to simplify the exposition of our algo-
rithm for the rearrangement, here we present a
simple example illustrating the principle on which
our technique is based. This example has linear
complexity, too, but the number of shiftings is
twice the number of elements to rearrange. The
reader wishing to go into the topic is invited to
consult the appendix.

Let us suppose that we have seven cards, num-
bered from one to seven. Let us suppose that they
are lined up and hidden, as shown in Fig. 5(a). In
this figure and in the following, the hidden cards
are represented as shaded. We wish to reorganize
them in an increasing order and we have at our
disposal a temporary location where we can place
the cards that cannot be put in their correct final
position because it is occupied by another card.
The temporary location is shown in the lower part
of Fig. 5(a) as a little unnumbered square. Each
time, we begin a sequence of operations from the
first hidden card on the left. If it is in the right
place, then we turn it over and leave it in that

position. Otherwise, we put the card in the tem-
porary location. If in this place there are also other
cards, we put it onto the others. If the correct po-
sition for the current card (the one we just placed
in the temporary location) is not free, we repeat
the same procedure for the card that occupies that
position and iterate the procedure until a free po-
sition is found. At this point, the last considered
card can be correctly positioned and, if other cards
are present in the temporary location, they can be
put, one at a time, in their correct positions be-
cause they are free as a consequence of the method
described. The procedure is repeated until no hid-
den cards remain and all of the cards are in the
correct place.

Let us describe the complete example of Fig. 5.
Sub-figure (a) shows the seven hidden cards. Let
us flip over the first one and, as it is not a 1, we
put it in the temporary location (a). It is a 6 and,
as the sixth position is occupied, we turn the sixth
card and put it in the temporary location, above
the 6 (b). This card is a 5, so we turn the fifth
card and put it in the temporary location, too (c).
Now we can see it is a 1 and the position it should
occupy is free. So, we put it in the first location
(d). Now we can empty the stack of cards in the
temporary location as shown in sub-figures (e)-(f).
Then, let us flip over the second card and, as it is
a 2, we leave it in the second position, unhidden,
and go on with the third card (g). By iterating
the procedure, we obtain the final result of sub-
figure (o) where all of the cards are sorted in an
increasing order.

In the appendix we will describe in detail how,
starting from this model, we implement the tech-
nique that allows us to turn the data from the
situation of Fig. 3 into that of Fig. 4.

C. Access to cells whose patterns are fragmented

After the execution of a SoC, some patterns
change their membership from one cell to another.
In particular, when we join two cells, their pattern-
s are, generally, stored in non-adjacent regions of
the matrix P. In that case, a direct access to the
patterns of the new cell is not possible if only their
number and their starting position is specified. In
order to avoid a global rearrangement of P after
each SoC, we implemented a second type of access
to the data. It is based on the use of pointers and
we employ it when the patterns that we are inter-
ested in are subdivided in fragments (or groups).
Each fragment is constituted by a certain number
of patterns belonging to the cell in question and
stored in consecutive locations. Again, the access
occurs by indicating the beginning of the patterns
(present in IP) and their total number (present in
NPC). But, in this case, the value of I P specifies
the location from where the first fragment is s-



tored. Links between fragments are managed with
the help of a new vector: IG(Np). It contains t-
wo kinds of information: either the number of the
consecutive patterns constituting the fragment in
question, or the pointer to the first element of the
next group. The two types of information are dis-
tinguished by the sign of the numeric value. An
element of IG is the pointer to the next fragment
when it is stored with the minus sign. The value 0
(zero) means that we are concerned with the last
element of the last group for the cell in question.
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Fig. 6. Access to the patterns of the generic ith cell when
they are, for example, distributed among 4 fragments.

In Fig. 6 an example illustrating such access
is reported. A matrix P with 50 total patterns
is represented and the 9 patterns constituting the
ith cell are highlighted. Not all of the elements
of IG contain meaningful information. These are
exclusively in the positions corresponding to the
first and the last element of each group, according
to the following criteria:

o when a value of IG is related to the first ele-
ment of a group, then it represents the number of
patterns forming the same group;

o when a value of IG is related to the last element
of a group, it is the pointer (sign-inverted) to the
first location of the next fragment;

o if a group is constituted by a single element (as
it is for fragment C in Fig. 6), IG holds just the
index, sign-inverted, for the next fragment;

e a value of IG corresponding to the last element
of the last group for a cell, holds the value 0.
According to the previous considerations, the i-
patterns of Fig. 6 are visited following the order
specified by the arrows, beginning from the row
indicated by IP[i] (IP[i] = 27, in this case). It
should be noted that the order in which we visit
the fragments depends on the links between them.
Here, they are visited following the sequence B C
A D.

The initialization of IG is effected after the exe-
cution of the procedure turning the data from the

situation of Fig. 3 into the one of Fig. 4. In
this case, IG can be obtained from NPC and IP,
as the patterns are sorted according to increasing
values of the field IC.

D. Other arrays needed for the execution of the
ELBG block

As will be clear in the next sections, we need
two other boolean vectors: Sp(N¢) and Un(N¢).
The former is employed to indicate the cells arising
from a splitting, the latter to indicate the cells that
have joined with other cells.

In table I we report all the arrays and the matri-
ces we use to store the data. Besides, the dimen-
sions and a brief description are given for each of
them.

Name | Dimensions Description

P (Np, K) Patterns

c (No, K) Codebook

s (NG, K) Sum of the coordinates
NPC (N¢) Number of patterns in the cell

Ic (Np) Index cell

D (N¢) Distorsion of the cell

H (Ng, K, 2) Hyperbox

IG (Np) Index group

IP (N¢) Index patterns

Sp (N¢) Split

Un (N&) United

TABLE I

MATRIX AND VECTORS ADOPTED TO STORE THE DATA

VI. DESCRIPTION OF THE PROCEDURES IMPLE-
MENTED

Now, we can describe the whole algorithm. In
order to make the exposition clearer, we adopt a
top-down methodology. So, we start from an high-
level description of the procedures and, gradually,
go into details. In the practical implementation of
the ELBG, every function receives a long list of pa-
rameters as input. As we do not want to make the
explanation too complicated, we will avoid such
listings and we will assume that all of the vari-
ables employed are global, so they are visible to
all the functions.

The high-level description of the ELBG follows.

The ELBG algorithm

Co = rand(N¢, K);

C =Cy;
D_y = +o0;
m = 0;

for(;;) // an infinite loop begins
{Voronoi partition calculation;
// During the calculation of the Voronoi
// partition, D,, is calculated, too
e Dn—Dum_
’Lf(Tl <= 6)
break; // end of the infinite loop

else
{Dm—l = Dm;
ELBG block;



// New codebook calculation satisfying CC

C =S8./[NPC,
m+ +;
}

}

Now we will detail the functions just described.

A. Voronoi partition calculation

The procedure we are about to describe is simi-
lar to that we have already seen in relation to the
LBG. However, here we store a greater quantity of
information with respect to the LBG.

Voronoi partition calculation

// Initialization of matrices and arrays
S = zeros(N¢, K);

NPC = zeros(N¢);

D = zeros(N¢);

D,, =0;

H[:,:, 1] = +infty(N¢, K, 1);

H[:,:,2] = —infty(N¢, K, 1);

// Identification of the cells and calculation
// of the related information
for(j =1;j <= Np;j ++)
{i= index of the nearest codeword to P[j,];
Sli, |+ = P[j,:];
NPC[i] + +;
DIi]+ = d(P[j,:],Ci,:]);
D,+ = d(P[j,],Cli,:]);
for(r=1;r <=K;r++)
{H[i,r, 1] = min(H]i, 7, 0], P[], 7]);
Hli,r,2] = maz(Hli,r,1], P[j, r]);
}
IC[j] = i;
}

B. ELBG block

In this subsection we will describe our imple-
mentation of the ELBG block. The schematic de-
scription of the procedure follows; after, we will
explain some of its particulars.

ELBG block

// First of all, the patterns are rearranged from
// the unsorted form of Fig. 3 to the sorted

// form of Fig. 4

global sorting of the data;

//Initialization of Sp, Un and IG

Sp = false[N¢]; Un = false[N¢];

I{ is initialized as explained in V-C;

for(i =1;i <= Ng;i + +)
{Dmean = Dm/NC;
if((D[i] < Dmean) AND (Spli] == false))

{// Let us begin the selection of the
// cells needed for a SoCA
if (NPC[i] ==
{t=0;
// such a value means that looking for
// the cell S; is not necessary because
// the cell S; is empty
}
else
{// look for the cell S;
I=index of the nearest codeword to C[i,:];
if(Sp[l] == true)
// We assign to [ a value indicating that
// Si has been previously split (and
// now it cannot be joined to another cell)
l=-1;
}
if(l >=0)
{// Let us look for p (S, is the cell
// to be split)
p = Roulette_wheel();
if(p>0)// S, was found
{SoCA;
// During the SoCA, dyiq and dpeq
// are also calculated, according to
// (14) and (15), respectively
Z.f(dnew < dold)
{SoC;
D+ = dpew — dold;

}

else break [/ exit from the for loop

}
}
}

After the rearrangement of the data and some
operations related to the initializaton, the array
containing the distorsions of the cells is scanned
sequentially. When a low-utility cell S; is found
(i.e. D[i] < Dmean), we look for the other two
cells (S; and Sp) needed to effect a SOCA. Let us
remember that S; should be joined to S;, while S,
should be split into two cells. However, some con-
siderations allow us to smartly reduce the number
of SoCAs effected at each iteration. They are:

o we do not allow a cell coming from one splitting
(or more) to be joined to other cells, even if its
utility is lower than 1. In fact, if a cell derives
from the splitting of another one because it was
too big, we think it is not suitable trying to expand
it again. For this reason, such cells are identified
by setting as true the corresponding value in the
boolean array Sp;

« we do not allow a cell coming from one previous
union (or more) to be split, even if its utility is
higher than 1. In fact, if two (or more) cells had
been joined to form a bigger one, a splitting could



create the previous situation again. The cells de-
riving from unions are identified by the value true
in the boolean array Un.

These two considerations help us to simplify the
execution of the SoCAs, as will be explained lat-
er. Therefore, before proceeding with a SoCA, we
verify if the three cells S;, S; and S, satisfy the
requirements. If S; or S; do not, we go on with
the sequential scanning of the codebook looking
for another cell S; from which a new SoCA could
begin. Instead, if no valid cell S, is found, then
the ELBG block ends. In fact, this means that no
more cells with utility lower than 1, and not pre-
viously united, exist. The search for S; (and the
whole procedure of the union of S; with S;) is by-
passed if S; is empty. In fact, in such a situation,
it is not necessary to assign any pattern to another
cell when y; is moved away.

B.1 Looking for the cell S,

Sp is searched by the roulette-wheel method
(11). Now we will describe the complete proce-
dure to select S,; we must remember that code-
words deriving from unions cannot be split.

Roulette_wheel()

// Let us calculate and store in z the sum
// of the distorsions of all the cells that can
// be split.
for(x =0,p=1;p <= No;p+ +)
{if(D[p] > Dmean AND Unlp| == false)
z+ = D[p];

// Let us verify that at least one cell with utility
// greater than 1 and not deriving from previous
// unions has been found.
if(x==0)
{// The procedure ends and the value p =0
// is returned.
return p = 0;

}

// Let us find the cell S, with the stochastic law
// described by (11). First, let us
// generate a uniformly distributed
// random number y in the range [0, z]
y = random(z);
for(z =0,p=1;p <= Ng;p+ +)
{if(D[p] > Dmean AND Unlp] == false)
{z+ = D[p];
if(x >=y) // this value of p is returned
return p // the procedure ends

}
}

B.2 Description of a SoCA

Now, we will describe a SOCA. Most of the oper-
ations executed store their results in auxiliary loca-
tions of the memory. So, if the SoCA is confirmed
(i-e., it turns into a SoC), the values are copied to
the general locations, otherwise they are discard-
ed. The names of the auxiliary arrays and matrices
are the same as the general locations. However,
they are distinguished by means of primes. Par-
ticularly, we indicate with a prime the arrays and
the matrices employed for the splitting and with
two primes the ones we use for the union. Accord-
ing to this convention, C'(2, K) is the matrix that
will store the codewords (y; and y;,) deriving from
the splitting of Sp. C"(1, K) will hold the code-
word (y;) coming from the union of S; and S;, and
so on. Some results are stored just in the gener-
al locations because, even if the SOCA should be
discarded, any wrong information they hold would
be ignored. So, the correct continuation of the al-
gorithm would not be compromised.
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Fig. 7. Situation of the data related to the cells ¢, I, p,

before the SoCA.

Once S;, S; and S, have been found, we have
the situation of Fig. 7. The values of Sp and Un
for the three cells involved are also reported; they
are:

e S;: Spli] = false because S; must be joined to
S; and cannot come from previous splittings. We
are not interested in the value of Unli].



e S;: is the same as S;.
e Sp: Unlp] = false because a cell to be split
cannot come from previous unions. We are not
interested in the value of Sp[p].

In the following, we report the scheme for the
SoCA and, after, we explain it.

Description of a SoCA

// The three cells S;,S5;,S, are fixed (the
// last one is needed only if S; is not empty).

// Operations related to splitting.

// The results are stored in C'(2, K), S'(2, K),
// NPC'(2), D'(2), H'(2,K,2), IC'(2).
splitting of S, in S} and S;

// Operations related to the union of
// S; and S; in S].
// The results are stored in C"'(1, K),
/] §"(1,K), NPC"(1), D"(1).
if(NPC[i] > 0) // S; is not empty
{S"[1,:] = S[i,:] + S[l,];
NPC"[1,:] = NPC[i,:]+ NPC[l,];
C"[1,:]=S8".[NPC";
// The distortion of the cell S is calculated
D”[]'] = EP[T,:]ESiUSl d(P[T) :]7 C”[]-a ])
// Let us store in fip the index of the
// first i-pattern; it will be needed if
// the SoCA becomes a SoC to link the
// pattern of the two cells in the
// data structure.
fip=index of the first i-pattern;
}
// Calculation of the distortion related to
// the old three cells (S;, Si, Sp) and
// to the new ones (S}, Sj, S,).
if(NPC[i] > 0) // the cell i is not empty
{dota = D[i] + D[l] + DIp];
dpew = D'[1] + D'[2] + D"[1];

else [/ the cell i is empty
{dota = DIp};
dpew = D[Zl] + D[pl]§
// Of course, in this case it will be
{/ dnew <= dold

o Operations related to the splitting. In the previ-
ous scheme, we neglected all of the details related
to the splitting because the procedures to apply
have already been described in IV-D.2. Besides,
as P has been rearranged, the input patterns we
are interested in are stored in consecutive rows of
P. So, the two procedures to be applied for the lo-
cal LBG (calculation of the Voronoi partition and
calculation of the codebook satisfying the CC) are
almost identical to the ones applied to the whole

data structure of the ELBG. The access to the
portion of the data involved in the operation oc-
curs by specifying the position from where all of
the p-patterns are stored and their number. These
values are stored in IP[p] and NPC|[p], respec-
tively (Fig. 7). In IV-D.2, we explained how the
initialization of the codebook for the local LBG
is effected and we said that the hyperbox holding
Sp must be known. This information is stored in
Hip,:,:].

o Operations related to the union. Let us remem-
ber that this phase is not executed if S; is empty
because, in this case, the removal of the codeword
related to it would not leave any pattern to assign
to other cells. In addition to the calculation of the
centroid for the new cell S, we keep in the memo-
ry the index of the last i-pattern. So, if the SoCA
turns into a SoC, we already have the value need-
ed to link the two cells in the data structure, too.
This operation is shown in Fig. 8.
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Fig. 8. Linking of the last [-pattern to the first i-pattern.
This operation will be executed during the SoC.

B.3 Description of a SoC

When the distortion we obtain by substituting
the old three cells and codewords (S;, S, S, and
the related codewords) with the three new ones
(Sis Sj, S, and the related codewords) is lower
than before the SoCA, this is confirmed and the
corresponding SoC is executed. In practice, it con-
sists in the copying of the results of the SoCA from
the auxiliary locations of the memory to the gen-
eral ones. Besides, the data structure must be ad-
justed so that the access can continue to occur
as described in V-A and V-C. The schematic de-
scription of the SoC is reported here; after we will
explain it.

Description of a SoC



// Operations related to the union.

// If the old cell S; is empty, no operation

// related to the union is executed.

if(NPC[i] > 0) // the cell S; is not empty
{// Copy of data to general locations

ClL,:] = C"[1,;
S[,:]=8"[1,];

NPC|l,:] = NPC"[1,];

D[l,:] = D"[1];

// S is identified as deriving from a union
Ull] = true;

// Linking of the patterns belonging to
// the two cells. The value of fip

// (first i-pattern) was stored

// during the SoCA

llp=index of the last [-pattern;

IG(llp] = fip;
}

// Operations related to the splitting.
// Copy of data to general locations.

Clo)=CL L Cli] =2,
Slp,:] = S"[1,:]; Sli,:] = S'[2,];
Hlp,::|=H'[1,::]; Hli,:,:] = H'[2,:,:];
NPCJp] = NPC'[1]; NPC[i] = NPC'[2];
Dl = D'[1]; Dli] = D'[2);

local sorting of the patterns related to S; and S;

// Adjustment of the other vectors.

1Pli) = P[] + NPC[p):

// IP]p] does not have to be modified

// Si and S, have to be identified as deriving
// from a splitting and not from a union.
Spli] = true; Splp] = true;

Unli] = false;

// Un[p] was already false

o Operations related to the union. The first oper-
ations concern the copying of the data from the
auxiliary to the general locations. Moreover, S,
that has grown because patterns have been added,
has to be identified as deriving from a union by
setting Un[l] = true. Afterwards, the linking be-
tween the patterns of the two cells that have joined
is effected as shown in Fig. 8. Instead, IC and H
are not modified because their values are necessary
only when a splitting occurs. But, cells deriving
from unions cannot be split.

o Operations related to the splitting. After the da-
ta have been copied from auxiliary to general lo-
cations, S; and S, are identified as coming from
splitting by setting Sp[i] and Sp[p] to the value
true. Moreover, it is necessary to set the value of
Unli], too. In fact, before the splitting, Un[i] was
not considered in any way. Now, the old cell S;
no longer exists (while S; has grown because the
old i-patterns have been added) and has been sub-

stituted by one of the two cells coming from the
splitting. So, according to the previous consider-
ations, it can be further split and this is possible
only if we set Un[i] = false.

Before the splitting, the p-patterns were stored in
consecutive locations of memory. After the split-
ting, this is not true any longer, as we can see in
the example of Fig. 9. However, we can restore the
order by executing a simple local rearrangement.
This means that only the data related to the split
cell are involved. In fact, all of them are stored in
consecutive locations and the same procedure we
apply to the whole data structure can be applied
only to the region in question. So, data can still be
accessed with the techniques previously described.
It is not necessary to modify IG because its values
are used only when we have to join two cells. But,
cells deriving from a splitting cannot be joined to
other cells.
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Fig. 10. Situation of the data related to the cells i, [, p,

after the SOCA

After the SoC, we have the situation of Fig. 10
and it has to be compared with that of Fig. 7.

VII. RESULTS AND COMPARISONS

In this section we will report some comparisons
concerning the compression of the famous image
of Lena [20]. For a complete set of comparisons,
the reader is invited to look at [11].
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Fig. 9. Local rearrangement of the patterns.

In image compression, a widely adopted mea-
sure for evaluating the process is the Peak Signal
to Noise Ratio (PSNR). For an 8-bit grey level im-
age, it is defined as:

PSNR = 10log,y ——75— 2557
=0 57=0
J (16)

where f(i,j) and f(i,j) are respectively the grey
level of the original image and the reconstructed
one. All grey levels are represented with an integer
value comprised in [0, 255].

The 8-bit grey level Lena’s image of 512 x 512
pixels was divided into 4 x 4 blocks and the re-
sulting 16384 16-dimensional vectors were used as
input data set. We compare the results produced
by the ELBG with those of Lee et al. [21]. They p-
resented an enhanced performance K-means algo-
rithm which improved both the classical K-mean
algorithm (the LBG) and Jancey’s method [22].
The results are summarized in Table II. Our tests
are averaged on 5 runs. In this case we improved
both the error and the number of required itera-
tions. In [11], we, experimentally, demonstrated
that, in this situation, the ELBG block introduces
an increase in the required time per iteration that
is maintained below 5%.

N¢ | Modified K-means ELBG
PSNR (dB) | Iter. | PSNR (dB) | Iter.
256 31.92 20 31.94 10.4
512 33.09 17 33.14 10.6
1024 34.42 19 34.59 11.8
TABLE II

LEE ET AL. AND ELBG COMPARISON

Another comparison is reported with the work
of Karayiannis and Pai [10]. In this case, the 8-bit

grey levels Lena’s image of size 256 x 256 is used
and a codebook of 512 codewords is constructed.
As their method depends on several parameters,
they executed several runs with different parame-
ter values. The best result they obtained for PSNR
was a value of 32.62 dB. With a codebook random-
ly initialized we obtained a PSNR of 33.04 dB as
the average of 5 runs.

APPENDIX

Now we will describe the procedure we execute
to lead the data from the unsorted form of Fig.
3 to the sorted situation of Fig. 4. This tech-
nique derives from the one described in V-B and
illustrated in Fig. 5. There, we showed how the
sorting of a certain number of cards (7, in that ex-
ample) developed through sequences of operations.
We tried to optimize such a procedure to reduce
the number of shiftings through the locations of
memory that the patterns are subjected to. This
is realized by means of a stack of indices helping us
to identify the order of the shiftings to effect be-
fore their actual realization. So, inside a sequence
of operations, we are able to directly move all of
the patterns (except for one) from the starting lo-
cation to the correct one without their having to
pass through auxiliary positions. Vectors that are
already in their correct locations are never moved.
The technique of Fig. 5 was based on the a priori
knowledge of the final position that each card had
to occupy. Here, the situation is slightly different
because each pattern can, correctly, be placed in-
side a range of positions, not just one. To make
the concept clearer let us consider, as an example,
Fig. 3. There, an input data set of 10 patterns
belonging to 5 different cells is represented. From
this figure, let us construct Fig. 11.

Here, we subdivided P into 5 regions, one for each
cell. This was done assuming that, when the ma-
trix will be sorted, the patterns belonging to cell 1
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Fig. 11. Initial situation. Only the arrays and the matrices
involved in the sorting operation are reported.

start from row 1 of P, then the patterns belonging
to cell 2 follow, and so on. In this way, the generic
i-pattern, can, correctly, occupy any position in-
side region i. In Fig. 11 and in the following pic-
tures, unshaded rows represent the patterns that
already occupy a correct position, i.e. those for
which the value of IC' is equal to the number of
the region where they are. Shaded rows identify
the patterns that have to be shifted. The opportu-
nity of shifting vectors inside a range rather than
to a single position, gives us more freedom. How-
ever, it is necessary to establish a rule that allows
us to quickly identify the location that the pattern
will have to occupy. For this reason we use the ar-
ray IP. According to the definition given in V, in
a configuration like that of Fig. 4, IP holds the
indices of the rows where each region begins. Dur-
ing the sorting, I'P plays a different role. Before
the procedure starts, it identifies the beginning of
the regions, as we can see in Fig. 11. Afterwards,
it is opportunely adjusted so that the generic el-
ement I P[i] contains the index of the first row of
region ¢ that is not occupied by an i-pattern. So,
when, during the rearrangement, we run into an i-
pattern, it is assigned to the row I P[i] (even if the
shifting will occur later). Then, I P[i] is updated so
that it contains the index of the next row in region
1 not occupied by an i-pattern. Working like this,
patterns already positioned in a correct region are
never involved in the rearrangement. When all of
the rows in region i have been assigned, I P[i] as-
sumes a value outside the range of region . But,
it is no longer meaningful because we will not run
into other i-patterns to arrange.

In Fig. 12 we begin to illustrate the procedure.
First of all, let us notice that IP[2] = 5 has been
set because row 4, the first in region 2, is already
occupied by a pattern that can remain in that po-
sition. Now, we will list the steps through which
the stack of the indices related to the first sequence
of operation is created. In this phase no pattern is
moved; only the order to follow for the shiftings is
determined, as we can see in Fig. 12.

o Let us begin from the first vector not occupying
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3 Patty | | 4| ]

F3 4 Patt, 2
5 Patt, | | 2| ¢ N
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z 7| _Pat, || 7] L
3 g 8] Paty || 4] | 5 |

4 9| Patt z 10

5 5 10| Patty || 2| b | 6|

Fig. 12. Sorting: stack creation.

a correct position (P[1,:], in this case), let us shift
it into the auxiliary location and let us keep in the
memory the number of the region where the initial
position has been freed; here, it is region number
1. Now, we have to identify a succession of vectors
to shift until we find one belonging to the region
we started from. It is necessary to complete the
sequence.

o P[1,:] has to be moved into region 3, in the row
specified by IP[3] (IP[3] = 6). Let us put the
value 6 in the stack, increase by one IP[3] and
consider PI6, :].

« P[6,:] belongs to cell 5, so it has to be shifted
to the row indicated by IP[5] (IP[5] = 10). Let
us put the value 10 in the stack, increase by one
IP[5] and consider P10, :].

o as P[10,:] belongs to cell 2, it has to be moved
into the row indicated by I'P[2] (IP[2] = 5). Let
us put the value 5 in the stack, increase by one
IP[2] and consider PI[5,:].

o P[5,:] belongs to cell 1; so it is the element that
allows us to complete the first sequence of opera-
tions because it can be shifted into the region we
started from. At this point we are with the situa-
tion reported in Fig. 13.
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Emptying of the stack (I).

Now we are ready to begin the shiftings of the
patterns following the order determined by the s-
tack, that we will empty according to the rule Last
In First Out (LIFO). The element (it is an index)
on the top of the stack is taken and the pattern
corresponding to that index is put in the empty
row of P. Then, we remove that element from the
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Fig. 14. Emptying of the stack (IT).
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Fig. 15. Emptying of the stack (III).

stack and, iteratively, repeat this procedure un-
til the stack is empty. (Fig. 13-15). Afterwards,
the pattern in the temporary location is shifted
into the empty row of P (Fig. 15) and IP[1] is
increased by one.

[ T[]

P Ic
Patts
Patt,
Pat,
Patt,
Patty,
Pait,
Patt,
Palt;
Patt,
Patt,

N

O 00 NO|(UT BjW N -

=

[olnfs [ s s

LE N R
Wl N .

Fig. 16. Situation after the completion of the first sequence
of operations.

After the first sequence of operations, we have
a situation as in Fig. 16. The procedure just de-
scribed starts again from row 2 and continues until
all the vector is sorted as we wish.

With this technique, for each sequence of oper-
ations, all of the patterns (except the one the se-
quence begins from) are directly shifted from the
initial to the final location. We could work as in
Fig. 5, by considering P and IC as a single matrix
and placing the record pattern-cell into the stack.
But, in that case, all of the patterns involved in
the sequence of operation are shifted twice.

When all the data have been sorted, the right
values for IP are restored so that they identify

the beginning of each region. The final situation
is that of Fig. 4.
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