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Abstract
In this paper the Fully Automatic Clustering System (FACS) is presented. It is a technique for clustering and vector quantization whose
objective is the automatic calculation of the codebook of the right dimension, the desired error (or target) being fixed. At each iteration,
FACS tries to improve the setting of the existing codewords and, if necessary, some elements are removed from or added to the codebook.
In order to save on the number of computations per iteration, greedy techniques are adopted. It has been demonstrated, from a heuristic
point of view, that the number of the codewords determined by FACS is very low and that the algorithm quickly converges towards the final
solution.
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I. INTRODUCTION

Cluster Analysis (CA, or clustering) is an important instrument in engineering and other scientific disciplines. Its
applications cover several fields ranging from texture and image segmentation [1,2], magnetic resonance imaging [3] and
computer vision [4] to information retrieval [5] and machine learning [6].

According to Jain et al. [7], CA is the organization of a collection of patterns (usually represented as a vector of
measurements, or a point in multidimensional space) into clusters based on similarity. Intuitively, patterns within a
valid cluster are more similar to each other than they are to a pattern belonging to a different cluster. Pattern proximity
is usually measured by a distance function defined on pairs of patterns.

In many applications, for example regarding telecommunications and signal compression, some techniques, based on
algorithms for Vector Quantization (VQ) are often used [8-11]. Also in this case, patterns are subdivided into groups (or
cells), based on similarity measured by a distance function [12-16]. Each cell is represented by a vector (called codeword)
approximating all of its elements. The set of the codewords is called the codebook.

In the wide scientific community using techniques for CA and/or VQ, a widespread opinion is that they are essentially
different. CA is, generally, conceived as the problem of identifying, with an unsupervised approach, the eventual clusters
inside the multi-dimensional data set to be analyzed [17-22]. Differently, a VQ algorithm is not so much interested in
finding the clusters, but in representing the data by a reduced number of elements that approximate the original data set
as well as possible. The concept is clearer with the help of some figures. Let us consider, for example, the bi-dimensional
patterns in Fig. 1(a). The aim of a CA algorithm is to automatically identify the two clusters present, as shown in Fig.
1(b). A good algorithm can also autonomously recognize the number of the clusters, even if it is not known apriori and
also in the presence of noise/outlier points. [2,4,23-26]. While, if we apply a VQ technique to the same data set, the
number of cells into which the data have to be subdivided depends only on the desired degree of approximation. The
higher the number of the codewords (and likewise of the cells), the better the degree of approximation. 4 and 8 cells
(with the related codewords) are highlighted in Figs 1(c) and 1(d), respectively. It is evident that, in the latter case,
the degree of approximation is better that in the former.

In spite of the differences outlined here, it is possible to demonstrate that, in many cases, CA and VQ are, practically,
equivalent [27-29]. Summarizing, we can say that, often, from an operative point of view, the two approaches roughly
execute the same operations: grouping data into a certain number of groups so that a loss (or error) function is minimized.

In literature, several techniques for VQ/CA exist where, as the algorithm develops, not only the values of the param-
eters to be optimized vary, but also their number. They are used for problems of both Supervised Learning (SL) and
Unsupervised Learning (UL). Among them, we cite: Growing and Splitting Elastic Nets (UL) [30], Incremental Radial
Basis Functions Networks (SL) [31], Growing Cell Structures (GCS, SL and UL) [32], Growing Neural Gas (GNG, SL
and UL) [33,34] that take Neural Gas [35] (UL) as a starting point, Fuzzy ARTMAP (SL) [36] that derives from the
Adaptive Resonance Theory (ART) of Grossberg [37], FOSART [29,38] and the Competitive Agglomeration Algorithms
[2,25].

In this paper the Fully Automatic Clustering System (FACS) is presented. It is a VQ/CA iterative algorithm whose
aim is, given a data set and a target error er, to find a codebook that approximates the input data set with an error
less than er. The cardinality of the codebook, such as the codewords themselves, is a parameter that the system, in
a completely automatic way, identifies during its execution. At each iteration, FACS tries to improve the setting of
the existing codewords and, if necessary, some elements are removed from or added to the codebook. In order to save
on the number of computations per iteration, greedy techniques, i.e. techniques of local updating, are adopted. In the
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paper it is also demonstrated, from a heuristic point of view, that the number of the codewords is very low and that the
algorithm quickly converges towards the final solution.

The paper is organized as follows: in section II, a brief introduction about Vector Quantization is given; section III
summarizes the ELBG, that is the starting point for FACS; in section IV, FACS is presented and its performances are
reported in V. Conclusions are presented in section VI.

II. VECTOR QUANTIZATION
A. Definition

The objective of VQ is the representation of a set of feature vectors x € X C R®* by a set, Y = {y;,...,¥n.}, of N
reference vectors in R*. Y is called codebook and its elements codewords. The vectors of X are also called input patterns,
input vectors or input data set. So, a VQ can be represented as a function: g : X — Y. The knowledge of ¢ permits
us to obtain a partition S of X constituted by the N¢ subsets S; (called cells):

Si={xeX:qx) =y} i=1,...,No 1)

B. Quantization Error (QE).

The QE is the value assumed by d(x, ¢(x)), where d is a generic distance operator for vectors. Several functions can
be adopted as distortion measures [12]. In this paper we will consider two of them: the Square Error (SE) and the
Weighted Square Error (WSE). Their formulations are:

k
Ax,y) = Y (@ = p)? e

for the SE and .

d(x,y) = Z w; (z; — yz’)g (3)

1=1

for the WSE, where w; (> 0) are the weights for each of the components.

The mean QE (MQE) is used to evaluate the performance of a quantizer. In particular, if the SE is adopted for the
distortion measure, the MQE is called Mean Square Error (MSE); if the WSE is used, then the MQE is called Weighted
Mean Square Error (WMSE). We will also use the square root of the MSE (RMSE).

In general terms, when X is constituted by a finite number (Np) of elements, the MQE is given by:

MQEED({Y,S}) = _Zd(xpvQ(Xp)):

where we indicate with D; the ith cell total distortion:

D; = Z d(Xn,y:) (5)

n:x,€S;

Equations (4) and (5) show that the MQE can be calculated as a function (D) of the codebook (Y') and the partition
(S). Now, we report two important conditions we will use throughout this paper that are necessary for calculating the
optimal partition (when the codebook is fixed) and the optimal codebook (when the partition is fixed) [12].

o Nearest Neighbor Condition (NNC). Given a fixed codebook Y, the NNC consists in assigning to each input
vector the nearest codeword. So, it is possible to divide the input data set in the following manner:

gi = {X €EX: d(X7Yi) S d(X7Yj)7
j=1,.,Ng, j#i} i=1,.,No (6)

The sets S; just defined, constitute a partition of the input data set. This is called the “Voronoi Partition” [13] and is
referred to with the symbol P(Y) = {S1,---,Sn.}. It is possible to demonstrate that the Voronoi partition is optimal
[12], i.e., for every partition S of the input data set, it holds:



D({Y,8}) > D({Y,P(Y)}) (7)

o Centroid Condition (CC). Given a fixed partition S, the CC concerns the procedure for finding the optimal
codebook. This is the codebook constituted by the centroid of each cell [12].

If we consider the set A C R* constituted by N4 elements and the SE or the WSE are adopted as measures for distance,
its centroid x(A) is:

%(A) = NLA 3 x (8)

x€A

If we take the codebook X (S) constituted by the centroid of all the cells of S:

X(S) ={x(S;);i=1,...,N¢} 9)

it is optimum [12], i.e. for every codebook Y, it holds:

D{Y,8} > D({X(S),S}) (10)

III. PREVIOUS WORKS: THE ELBG

The starting point of the research reported in this paper was our previous work: the ELBG [39]. For this reason, here,
we briefly describe it. The ELBG has been developed starting from the Linde-Buzo-Gray (LBG) algorithm [12], known
also as the Generalized Lloyd Algorithm [40]. The ELBG is an iterative algorithm, that, N¢ being fixed, iteration by
iteration, produces a quantizer better than or equal to the one at the previous iteration. The steps through which it
develops can be summarized as follows:

1. initialization. In [39], it was verified with several examples that the ELBG is practically insensitive to the initial
choice of the codewords. Therefore, a random initialization of the codebook is, generally, sufficient to start it up;

2. partition calculation. Given the current codebook, the related Voronoi partition is calculated according to the
NNC (6);

3. termination condition check. The error at the current iteration (Dcy,r) is compared with the one at the previous
iteration (Dprey). If the ratio |Dprey — Deurr|/ Dprev is less than a prefixed threshold (e) then the algorithm ends; otherwise
it continues with the next step;

4. ELBG-block execution. Its aim is to escape from the local minima by equalizing the distortions introduced by
the cells (D;); its meaning and the operations executed inside will be summarized later, in sub-section ITI-A.

5. new codebook calculation. Given the current partition, the new codebook is calculated according to the CC (9);
6. return to step 2.

The steps above are the same as the LBG [12] with the addition of the ELBG-block between the termination condition
check and the new codebook calculation. The aim of the ELBG-block is to identify the possible situations of local minima
and to remedy them by opportunely shifting some codewords.

In Fig. 2 a typical example of a local minimum is reported. In Fig. 3 a better distribution of the codewords, that
arises by executing the shift of a codeword and some local adjustments, is shown. The ELBG-block just attempts to
remedy the situation of local minimum by smartly performing several shifts such as the one illustrated in Figs. 2 and 3.

The mathematical justification of such operations comes from one of Gersho’s theorems [41]. He explained his
partial distortion theorem [42] saying: “Each cell makes an equal contribution to the total distortion in optimal vector
quantization with high resolution”. Gersho’s theorem is true when certain conditions are verified (according to [42], a
high-resolution quantizer has a number of codewords tending to infinite). But, in [43], experimental results proved that
it maintains a certain validity also when the codebook has a finite number of elements. So, in [39,44], the ELBG-block
was introduced in order to pursue the equalization of the total distortions of the cells (D;). The basic idea of the
ELBG-block is to go towards the desired equalization by joining a low-distortion cell with a cell adjacent to it. At the
same time, a high-distortion cell is split into two smaller ones. So, it is as if the low-distortion codeword is moved inside
the high-distortion cell. This is a Shift of Codeword Attempt (SoCA). If this produces a decrease in the MQE, then the
SoCA is confirmed, i.e. a Shift of Codeword (SoC) is executed. Otherwise, the shift is discarded. Several SocA’s are
executed inside the ELBG block. According to these definitions, Figs. 2 and 3 represent a simple example of a SoCA.



A. The ELBG-block

Now we describe in more detail the operations executed inside the ELBG-block.

Previously, we said that the ELBG-block attempts to obtain the equalization of the distortions by joining low-distortion
cells with cells adjacent to them and by splitting high-distortion cells into two. If we define the mean distortion per cell
Dinean as

1 &
Dean = N_C ;Dz (11)

we can define as low-distortion the cells with D; < Dpyean and as high-distortion the cells with D; > Dpean-

A.1 SoCA’s

To execute a SOCA three cells are necessary (see Fig. 2 for an example). They are:
o the ith cell (S;): a low-distortion cell (D; < Dmean);

o the Ith cell (S;): the cell whose codeword (y;) has the minimum distance from y;;
o the pth cell (Sp): a high-distortion cell (D, > Dmean);

S; is searched for in a sequential manner. We mean that, for the first SOCA, we start from the beginning of the
codebook and, when we find a cell whose distortion is less than Dyyean, we choose it. Afterwards, we look for the other
two cells (S; and S,) that are necessary. At the next SoOCA, we continue the search for another cell S; from the point
where we stopped previously, and so on. When we reach the end of the codebook, the termination condition is verified
and we try no more SocA’s for that iteration of the ELBG.

Sy is looked for in a stochastic way. The method adopted sounds like the roulette wheel selection in genetic algorithms
[45]. In practice, we choose a cell with a probability P, proportional to its distortion value. In mathematical terms:

D,

P =
p
Eh:Dh >Dmean Dy,

(12)

In [39,46] the criterion adopted for the selection of cells are described in detail. However, the description given here
is enough to explain the remainder of the algorithm.

Figs. 2 and 3 will be used as a simple bi-dimensional example to explain a SOCA. In Fig. 2 the three cells S;, S; and
Sp are represented. We must split the big cell S, in two smaller ones and join S; and S; to form a bigger cell. This is
realized by shifting y; near y, and executing some local rearrangements.

o Splitting. We said that we shift y; near y,. But, what does near mean? We know that a finite number of k-
dimensional vectors form the input data set. So, we can say that S, is contained inside the k-dimensional hyperbox
I,:

I, = [T1im, T1m] X [Tam, Tam] X o X [Tm, Tem] (13)

where zp, and zp\ are respectively the minimum and maximum values assumed by the hth dimension of all the patterns
belonging to S,. From this consideration, we place both y; and y, on the principal diagonal of I,,; in this sense, we can
say that the two codewords are near each other.

Codewords are set in such a way that the diagonal is subdivided into three parts; the central part is twice the length
of the ends, as is illustrated in Fig. 4. The situation of Fig. 4 can be easily generalized to a k-dimensional problem.
Afterwards, a rearrangement of y; and y, is executed by means of a local LBG where only the patterns belonging to
the old S, constitute the input data set and the two codewords on the principal diagonal are the initial codebook. By
choosing a high value for e (typically 0.1 + 0.3), in a few iterations (one or two) the local LBG ends. In Fig. 3 we can
see the result of this operation where the two new codewords (y;, y;,) and the two new cells (S5;,5,) are reported.

e Union. After the codeword y; has been moved away, we add all of the patterns belonging to the old cell S; to S; and
we place y; in the centroid of the cell so obtained. The result of this operation is reported in Fig. 3. In symbols:

(14)

{ Sl, =S US;
yi =x(5))



A.2 Mean Quantization Error estimation and eventual SoC

After the shift, we have a new codebook (Y"') and a new partition (S’). Therefore, by applying eq.(4), we can calculate
the new MQE. If it is lower than the value we had before the SoCA, this is confirmed, i.e. it turns into a SoC. Otherwise
it is rejected. As only three cells and the related patterns are involved in the SoCA, we can execute the new MQE
calculation considering only the three old cells (S;, Sp, S;) and the three new ones (S;, S,,, S]).

B. Considerations regarding the ELBG

We have seen that a SoC consists of the combined execution of two operations: the splitting of a cell and the union
of two other cells. So, N¢ remains unchanged because the codeword that is eliminated from one place is inserted into
another. For this reason we use the word shifting to describe the whole operation. Instead, if we execute only the part
related to splitting or only that related to union, the number of codewords will increase or decrease, respectively. In this
way we can insert or delete some codewords from a codebook. Such operations can be considered, in first approximation,
fast and intelligent because:

« insertions are effected in the regions where the error is higher and deletions where the error is lower;
« operations are executed locally, i.e. without global reorganizations of the codebook and the partition (see ITI-A.1);
o several insertions or deletions can be effected during the same iteration always working locally.

Insertions and deletions of codewords effected by FACS are realized working in this way, as will be explained in detail

in the next section.

IV. FACS
A. Introduction

In this section we will describe how FACS works. As we have previously mentioned, it is a CA/VQ technique whose
objective is to automatically find the codebook of the right dimension, when the input data set, the distortion measure
and the desired error (or target, er) are fixed. It develops through a sequence of iterations like the ELBG, that is
taken as a starting point. But, unlike the ELBG, FACS, evaluates the error at the end of each iteration and, according
to whether it is above or below the target, decides to make another iteration with the same number of codewords
or if it is necessary to increase or decrease N¢c. Such an increase or decrease happens smartly, trying to insert new
codewords where the quantization error is higher and to eliminate them where the error is lower. A similar strategy is
proposed by Fritzke in [30,32] for his competitive-learning algorithms, while FACS is a K-means type algorithm [39,47].
Besides, in FACS, insertions and deletions of codewords are regulated by a stochastic process; in [30,32] they occur
deterministically. Particular attention is paid so that the technique employed allows the convergence of the algorithm
towards a good solution in a few iterations. The results presented in section V will show that a number of iterations
comparable with the ones required by the ELBG are enough. In [39,44,46] the high speed of convergence of the ELBG
has already been highlighted.

B. General Description

Each of the iterations through which FACS develops (FACS-iterations) can be summarized as in Fig. 5. It can be
divided into two parts: in the first one the same operations that have been described in the previous section for the
ELBG are executed. They are: the Voronoi partition calculation, the ELBG-block execution and the calculation of
the codebook satisfying the CC. For this reason, such a sequence of operations was grouped into a single block that
we called ELBG-iteration. A FACS-iteration is completed by the execution of the last block (the FACS-block) whose
functionality is to smartly modify, if necessary, the number of the codewords.

As illustrated in Fig. 6, we can distinguish two phases during the execution of FACS. Each of them is constituted by
a sequence of FACS-iterations like the ones in Fig. 5. For each FACS-iteration, the ELBG-iteration executes the same
operations for both of the phases, while the operations executed inside the FACS-block are different.

The first phase, called Smart Growing, consists of a certain number of FACS-iterations, during which the number of
the codewords is gradually increased until the error barely goes below er. Such an increase happens by splitting, one at
a time, some cells, chosen among the ones with a total distortion greater than Dy,ean. So, codewords are inserted where
the distortion is higher.

During the second phase, called Smart Reduction, a certain number of FACS-iterations are executed during which
the number of codewords is decreased. More precisely, if during the first phase of an iteration (the ELBG-iteration) the
error goes below er, as many codewords as are necessary to obtain D > ey are deleted. A codeword deletion is realized
by choosing a cell whose total distortion is less than Dpyean and by joining it to the nearest cell.

After an insertion or deletion occurs, we can calculate the new distortion by modifying, in (4), only the contributions
of the cells (D;) involved in the splitting or in the union. So, we are able to immediately evaluate if other insertions or
deletions are necessary without recalculating the Voronoi partition, therefore very quickly. The whole procedure for the
selection and the insertion or deletion of the cells will be described later.



Now, let us describe the two phases through which the algorithm develops, as we have shown in Fig. 6.

C. Smart Growing

The initialization of the codebook could be executed starting from a single codeword in the centroid of the whole
input data set and inserting new ones until the error is below ep. Afterwards, during the next iterations, codewords
in excess would be removed. However, we realized, experimentally, that a better result is obtained when the insertion
of the codewords is effected more gradually. With the term better result we mean that, under the same value of ep,
final codebooks with lower values of N¢ are obtained. The phenomenon was more evident when the complexity of the
problem increased.

In Fig. 7 the whole phase of the Smart Growing is illustrated. The growing happens by inserting, each time, as many
codewords as are necessary for the error to be equal to or less than (1 + p)er, where p > 0 and is monotonically not
increasing from pini t0 Pend (Pena = 0). In the same picture, the FACS-block and the operations executed by it when
we are in the Smart Growing phase are highlighted. Inside the FACS-block, the block dealing with the insertion of the
codewords is further highlighted. A more detailed description of its function will be given later in this sub-section. Once
the law regulating the decrease of p with the iteration number (n) has been fixed, we can summarize the Smart Growing
as follows.

N¢ =1 and n = 1 being fixed, place the first codeword in the centroid of the whole input data set;

insert as many codewords as are necessary to obtain D < (1 4 p(n))er;

if (p(n) = 0) then the Smart Growing ends;

execute an FLBG-iteration,

if (D < er) then the Smart Growing ends;

n+ +;

return to point 2.

We verified experimentally that it is better to select a high initial value (about 1) for p and make it decrease quickly
iteration by iteration. For this reason we chose to make p decrease from p;,; t0 peng = 0 in ny iterations and that, for
the first ny — 1 iterations, it follows an exponential law, i.e.:

N otk W=

ae P forn=1,2,---ny—1
p(n) = { y (15)

10 forn =ny

where « and [ are positive constant values.

Still experimentally, we saw that about ten iterations are enough to obtain good results. In Fig. 8 p(n) is reported
when n; = 11 and « and § were fixed so that p(1) = 1.0 and p(n; — 1) = 0.01. Such values were used for all of the tests
we effected with FACS.

Fig. 9 details the operations that are executed by the block regulating the insertion of the codewords inside the FACS-
block and highlighted in Fig. 7 for the Smart Growing phase. If the quantization error is above the desired threshold
((L+p)er)), the FACS-block inserts the number of codewords necessary to take it just below. This happens by executing
several times the procedure of the splitting that was explained in ITI-A.1 for a SoCA. For a better understanding of the
operations reported in Fig. 9, we must keep in mind that:

o The selection of the cell to split and of the related codeword (S;,y;) is made among the ones whose distortion is greater
than Dyyean with the roulette wheel method (see (12)).
o The splitting of (S;,y;i) in (S,,y%) and (S}',y!) happens as is explained in ITI-A.1.

« The update of the partition and of the codebook consists of the substitution of (S;,y;) with (S],y}) and (S/,yY).

(3

C.1 Discussion about the law regulating the decrease of the target error

The employment of the greedy strategy described above for the insertion of the codewords, allows an enormous saving
on the computation. However, it is a non-optimal solution because not all of the elements of the codebook and of the
data set are considered. For this reason, each iteration includes, as well as a number of local updates, also a global
rearrangement. The non-optimal effect of the local updates is more evident particularly in the early iterations when the
codebook is very disorganized. In that case, it is necessary to insert a high number of codewords in order to ensure the
desired target. But, if the initial target is higher than the one specified by the user and, gradually, approaches it, during
the early iterations a lower number of codewords is inserted. Iteration by iteration, because of the global optimization,
the codewords distribute themselves better and better; so, the new insertions can occur more exactly.

Besides, also the following phase, i.e. the Smart Reduction, benefits from such a way of operating because it will have
to deal with the removal of a lower number of exceeding codewords.



D. Smart Reduction

The whole phase of the Smart Reduction can be summarized as in Fig. 10. The number of the codewords is gradually
decreased as soon as, at the end of an iteration, the error is equal to or less than the target. Instead, if the error is above
the target we continue with the same resolution, i.e. with the same number of codewords. In Fig. 10 the FACS-block
and the operations it executes during the Smart Reduction phase are highlighted. A more detailed description of it is
reported in Fig. 11. If the quantization error is equal to or less than the desired value (er), the FACS-block deletes the
number of codewords necessary to take it just above. The elimination happens in a smart way because we try to remove
the codewords that contribute the least to the total distortion.

To understand better the operations reported in Fig. 11, we must keep in mind that:

o the cell to eliminate and the related codeword (S;,y;) are selected among the ones whose distortion is less than
Dinean with a probabilistic method analogous to the one expressed by (12). Here, the cell to eliminate is chosen with a
probability that is a decreasing function of its distortion. In mathematical terms:

— Dmean - Dp
Z:h:Dh<Dmean (Dmean - Dh)
o the union of (S;,y;) and (S;,y;) to form (S},y;) is effected as explained in ITI-A.1;

o The update of the partition and the codebook consist of the substitution of (S;,y;) and (S;,y;) with (S],y}).
The block related to the termination condition will be explained later.

P, (16)

E. Behaviour of FACS versus the number of iterations and termination condition

The algorithm was developed so that, during the Smart Deletion, the error is always near er. This happens thanks
to the continuous adjustments of N¢.

In Fig. 12 we report the typical trend of the error and the number of codewords FACS works with, versus the number
of iterations. The graph refers to an image compression task, whose details, that are not, at present, important for
understanding the picture, are given in the section related to the comparisons.

For a better graphic visualization, we chose to report the normalized values of the variables in question. In particular,
N/, is N¢ normalized with respect to the value found by FACS for that run after 200 iterations; the RMSE (D) is
normalized with respect to the target (er). We can immediately see that, after the insertion of the codewords ends, the
algorithm always keeps the error very close to er. In particular, we can notice the correlation between the two curves
represented. When the error is greater than e, N¢ is kept constant. As soon as D goes below ep, N¢ is automatically
decreased until the error is above er.

The graph just examined suggests two criteria to employ as termination conditions for FACS. Both of them are to be
adopted when the Smart Growing phase has ended.

o the algorithm ends after a certain number of prefixed iterations;
o the algorithm ends when a certain number of consecutive iterations with the same value of N have been executed.

If we choose one of them as the termination condition, it is possible that, when FACS ends, the quantizer obtained,
with N¢ codewords, generates an error greater than er. Such an error, considering how the algorithm develops, is very
close to er. So, according to its value, it could be considered acceptable. However, even if it cannot be considered
acceptable, it is sufficient to remember that the quantizer with N¢ codewords was obtained by eliminating a codeword
from the one with N¢ + 1 codewords, that produced an error less than er. Therefore, if we keep in memory the last
codebook that was able to ensure an error less than e, we can stop the algorithm at any moment and have a codebook
satisfying the desired specifications.

F. Discussion about outliers

We wish to underline again that FACS has been conceived with the aim of autonomously calculating an opportune
codebook having, as its only requirement, the satisfying of a target error (specified by the user) with the least number of
codewords. However, the presence of outliers may degrade the results obtained by FACS. For example, let us consider
Fig. 13(a). There, we can locate two clusters of points and one outlier point rather “far” from the clusters. Let us
suppose FACS is launched and that, for a certain value of e, it finds 3 codewords, one in the center of each cluster and
one coinciding with the outlier, as in Fig. 13(b). According to eq. (4), the MQE is given by:

Dy + D> + D3

Given that the outlier is exactly represented by codeword number 3, we have D3 = 0. Now, if we calculate the MQE
only on the “clean” part of the data set, i.e. excluding the outlier, it is:



MQEclean = N_ 1 (18)

Obviously, MQE .., > MQE. This implies that the presence of outliers can also heavily affect the final result obtained
by FACS. This is not a drawback of FACS, but it derives from the nature of the algorithm itself.

However, there are applications where the identification of the outliers is essential in order to avoid their influence
on the final result. In such cases, FACS can still be used, provided a noise category removal mechanism [38] is added
for treating the outliers. Even if it is outside the scope of this paper, we wish to cite some methods commonly adopted
in literature that, opportunely readapted, could represent the desired modifications. For example, a simple mechanism
lets the algorithm run with the desired value of ep until it ends. Afterwards, the outliers are identified (for example, the
patterns constituting a cell with a single pattern), and removed (together with the related codewords). Therefore, the
algorithm can go on with the “clean” data set so obtained. More advanced mechanisms could provide for the removal of
patterns constituting cells whose cardinality is less than a prefixed threshold (for example, a certain quota of the total
number of patterns).

V. RESULTS
A. Introduction

In this section we present the results obtained by FACS and compare it with both algorithms where the codebook has
a fixed size, and techniques where the dimension of the codebook is not known.

In order to perform the comparisons, both in terms of final result and speed of convergence, we looked for similar
techniques already documented in literature. We found several algorithms that, as underlined by their authors, can
generate a codebook of opportune dimension that is able to ensure the desired level of performance [30-33]. However,
we noticed they have been used either as traditional algorithms for VQ/CA [30], where N¢ is fixed, or as algorithms
for supervised learning and classification [32]. For some of them it is explicitly said that they can be used to generate
a codebook of the opportune size once the desired error has been fixed [31,33]. Unfortunately, we did not find any
example where they were employed in this way. Besides, also when they were used as traditional VQ/CA algorithms,
we found no numerical results directly comparable with FACS. For example, in [30], Fritzke reports the results related
to an image compression task for its Growing and Splitting Elastic Net. In particular, he uses the image of Lena [48] of
480 x 480 pixels at 256 levels of gray. But, his results also consider an intermediate processing of the data by means of
a multi-layer perceptron; so, they are not directly comparable to the ones obtained by FACS.

However, comparisons with some of these algorithms ( [33] and GNG-U [49]) have been performed following the
suggestion of the author, i.e. making the number of codewords “grow” until the desired target is reached. Besides, the
performances of FACS can be compared with the ones of a traditional algorithm for VQ/CA where N¢ is a datum. In
fact, it is possible to fix a value of N¢ and see what error the VQ algorithm obtains. Afterwards, we can choose that
error as the target for FACS and see how many codewords are necessary to obtain that performance. The comparison
has been executed with the ELBG, that has obtained performances better than or equal to the ones of the previous VQ
algorithms existing in literature [15,16,43,50].

Several more algorithms exist in literature where the number of the codewords is not a datum but one of the results.
Among them we have chosen to make comparisons with FOSART, an algorithm in the family of Adaptive Resonance
Theory (ART) [29,38] and the Competitive Agglomeration algorithm [25].

Afterwards, we have tried using FACS for one of the classification problems reported in [32].

All of the tests have been effected on machines equipped with Intel Celeron 366 MHz processors and running the
LINUX operating system. The related details will be given later.

As we have said in IV-F, FACS has been conceived with the aim of autonomously calculating an opportune codebook
having, as its only requirement, the satisfying of er with the least number of codewords. We are aware that some of
the algorithms we used for our comparisons were designed for solving different problems. So, a direct comparison with
FACS may appear rather forced. However, the techniques considered are the works in literature that, to the best of our
knowledge, can be considered more similar to ours.

B. Comparison with ELBG

In this sub-section we evaluate the performances of FACS for a typical task of VQ: image compression. For our tests
we chose the image of Lena of 512 x 512 of 256 gray levels. It was subdivided into 16384 blocks of 4 x 4 pixels and the
related 16-dimensional vectors were used as learning patterns.

The procedure employed to effect the comparisons develops through the following points:

1. a value for N¢ being fixed, the ELBG is executed and its results, in terms of RMSE, are collected;
2. FACS is executed using the value of the RMSE obtained by the ELBG as target;



3. the number of codewords found by FACS is compared with N¢.

The comparison was repeated for several values of N¢. As we will see, FACS obtains, practically, the same number
of codewords the ELBG had been launched with. Besides, we will see that it is possible to fix a relatively low number
of iterations (we have chosen 15) and obtain results nearly equal to the ones we would obtain by making FACS run for
a much longer period. In the remainder of the article, we describe in detail the procedure we have followed.

The ELBG was launched for N = 128,512,4096 and we chose a very low value for e (0.00000001). In this way, the
algorithm ends when, practically, it reaches the minimum for that run.

In table I the results obtained are reported. All of the values are the mean calculated on 10 runs. For each value of
N¢ we report the results obtained after 15 iterations and the ones obtained after the algorithm ends (oo iterations).
Each result is reported together with the variance calculated on the runs effected.

Before we proceed to the comparisons with the ELBG, some considerations regarding the calculation times are
necessary. As we saw in [39], the time required per iteration, once the input set has been fixed, increases almost linearly
when N¢ increases, too. As we can see from Table I, this is, more or less, valid when passing from No = 128 to
N¢ = 512, while this is not true when passing from N¢ = 512 to N¢o = 4096. Such behaviour occurs because, in such
a complicated task (the ratio %—? is 4), about half of the patterns are involved in SoCA’s during the execution of the
ELBG-block. Instead, in the other cases considered, the contribution of the ELBG-block is lower and is in agreement
with the rate (about 5%) that we indicated in [39] and the time per iteration increases almost linearly when N¢ increases,
the other parameters being fixed.

Afterwards, we launched FACS with er set to the RMSE found by the ELBG after 15 iterations (RMSE;5(N¢)) and
after infinite iterations (RMSEq(N¢)) (for the values of N considered) as targets. In Table II, the values obtained by
FACS after 15 and after 200 iterations are reported. As we can see, FACS obtains codebooks with, practically, the same
number of codewords used by the ELBG to achieve that error; the difference is inside 3% in all of the considered cases.
Besides, the values of N/, (the number of codewords obtained by FACS normalized with respect to the value found after
200 iterations) show that, after 15 iterations, FACS obtains a number of codewords that is very close to the one it will
obtain after 200 iterations; the difference is below 5% in all of the considered cases. Also the mean time per iteration
for ELBG and FACS are comparable.

C. Comparison with GNG and GNG-U

Here, a comparison with GNG and its variant (GNG-U), both from Fritzke [33,49] is reported. They, gradually, insert
codewords until the prefixed number or until a certain “performance measure” is fulfilled. In our case, the performance
measure to be considered is the achievement of e7. The error is calculated at the end of each epoch® (or iteration) and,
like in FACS, according to whether it is above or below e, a decision about the insertion of more codewords is taken.

All of the tests described here have been executed using the image of Lena previously mentioned. Also the simbology
is the same as the one used in the previous comparison.

For the execution of GNG, as well as the desired e, it is necessary to specify several configuration parameters. In
order to choose such values, we have referred to the works from Fritzke where he presented his algorithms [33,49, 51].
The values that we extracted from such papers follows:

. & = 0.05,0.2
e €, = 0.006,0.0006
e x=20.5

o 5 =0.005,0.0005
« A =100, 300,500
® Qe = 90,88,120

We can see that, for a, a single value has been used in all of the examples reported. On the contrary, different values
in different examples have been used for the other parameters. So, we have realized several tests for choosing their best
combination; we fixed ey = RMSE;5(128) and tried all of the possible configurations. In the end, we have verified that,
for this problem, the best results were obtained by choosing €, = 0.2, €, = 0.0006, 8 = 0.0005, A = 500, @y,q, = 50. We
have also executed some tests with GNG-U, but, if using, for this problem, the same values of the parameters used by
Fritzke , GNG-U performs worse than GNG. According to such considerations, we have completed our tests with GNG,
changing the final RMSE and using the values determined above. The results obtained are summarized in Table III.
In Table III two series of values are reported: the former (labeled Ep,;y,) refers to the values obtained after the least
number of epochs necessary for the achievement of er; the latter refers to the values obtained when the algorithm goes
on until a maximum of 50 epochs, in order to better locate the codewords. N, is the number of epochs. As regards
the test whose target is RMSE;5(4096), the algorithm is stopped as soon as ey is reached, because of the high number
(136) of epochs required. By comparing Table IIT with Table II, we can clearly see that GNG ensures the desired target

In [32], Fritzke says that, in case of a finite training set, a common measure is the number of cycles through all training patterns, also
called epochs. Practically, an epoch is equivalent to a FACS-iteration.



with a higher number of codewords. Further, when the er decreases, it also needs more epochs than FACS for ensuring
the target.

D. Comparison with FOSART

Now, we present a comparison with a technique belonging to the family of the Adaptive Resonance Theory (ART)
algorithms proposed by Baraldi and Alpaydin in [29,38] and called Fully self-Organizing Simplified Adaptive Resonance
Theory (FOSART). The authors themselves use it also for tasks of VQ. However, FOSART is not an algorithm designed
exclusively for VQ, but it can also be used for problems of hidden data structure detection (perceptual grouping) and
probability density functions estimation.

The parameters we have used for our tests are the ones used by the authors as default values, while the only quantity
we have made change is the vigilance threshold p. The termination condition used for FOSART is the same as the one
employed for the ELBG with ¢ = 0.0001 and the MSE as measure for the MQE. The range of values chosen for p is
such that the number of codewords obtained is inside the range of values of N¢ considered for the previous comparisons
with ELBG and GNG. The results of the comparison are reported in Table IV. The first column represents the value
of p FOSART was launched with. The final MSE obtained by FOSART was given to FACS as target; in the table, the
number of codewords determined by FACS after 15 iterations is reported. As we can see, under the same MSE, FACS
needs a number of codewords that is clearly less than the number of codewords used by FOSART.

E. Comparison with the Competitive Agglomeration Algorithm

Here, we report a comparison with the technique proposed by Frigui and Krishnapuram in [25]: the Competitive
Agglomeration algorithm. FACS and the Competitive Agglomeration algorithm share the property that the number of
the codewords (or prototypes, according to the nomenclature in [25]) has not to be specified.

Let us consider, for example, one of the data set used in [25]. It is reported in Fig. 14 together with the 4 codewords
obtained by the Competitive Agglomeration algorithm after 10 iterations. Once the RMSE previously obtained has
been fixed as the target, FACS, in only 6 iterations, finds 4 codewords located as in Fig. 15 and the RMSE obtained is
practically the same (about 99.8%) as the one of the Competitive Agglomeration Algorithm.

F. Classification

The subject of this sub-section is a comparison between FACS and the Growing Cell Structures (GCS) algorithm,
another technique proposed by Fritzke in [32] and used, in the same paper, also for a problem of supervised classification.
Also in this case, the task of finding the right number of codewords is left to the algorithm.

The test mentioned above concerns the problem of the two spirals: it consists of 194 two-dimensional vectors lying on
two interlocked spirals, which are the classes to be distinguished in this case.

The whole procedure of the classification is constituted by several phases, one of which (the clustering phase) consists
in the execution of FACS. We have executed our tests operating in two distinct modalities. In the former, the labels
(class 0 or class 1) of the points constituting the spirals are used during the clustering phase; in the latter, the clustering
phase occurs without using the labels that are employed in the following phase, i.e. the labeling of the codewords.

F.1 Mode 1

In this case, the input values are given, together with the related outputs, to the clustering system. The input is
constituted by 194 bi-dimensional vectors representing the two spirals, while the output is the related membership class
(0 or 1).

The procedure we have followed to perform the classification can be summarized in the three following points.

1. Creation of the learning patterns to train FACS. They are constituted by the tri-dimensional vectors obtained
by joining each of the 194 two-dimensional vectors with the related output as the third component.

2. Clustering Phase. FACS is launched giving it the tri-dimensional vectors constructed at the previous point as the
input data set. Later, we will see the details of this point.

3. Codewords labeling. In order for the classification to happen correctly, the execution of the opposite operation of
the one at point 1 is necessary. Therefore, in each tri-dimensional codeword, the components related to the input have
to be separated from the ones related to the output. This, as we have done for the learning patterns, is used to label
the related bi-dimensional codeword. The codeword will be identified as representing class 0 or 1 whether respectively
more bi-dimensional patterns belonging to class 0 or 1 are present inside the cell in question (majority voting, [52]).

4. Classification. Each (bi-dimensional) input pattern is compared with all of the labeled bi-dimensional codewords.
Once the codeword with the least distance from the pattern in question has been found, its label is read and the pattern
is considered as belonging to that class.

The following specifications are necessary so that the execution of FACS (point 2) occurs correctly.



e Pre-processing of the data. When the components of the vectors constituting the input patterns all have very
different statistical distribution (as regards both the order of magnitude and the shape of the distribution) some problems
can arise. In fact, it is possible that the components with higher dynamics are approximated with high precision, while the
ones with lower dynamics are approximated with poor precision. In order to avoid such a situation, the tri-dimensional
vectors constituting the input data set for FACS, have been pre-processed by normalizing each component with respect
to standard deviations and, for all of the subsequent operations, the vectors so obtained have been employed;
o The distortion measure adopted. We tried to force FACS to generate a codebook with cells of tri-dimensional
vectors as homogeneous as possible . With the term homogeneous we mean that a cell is constituted by patterns
belonging to the same class, i.e. the third component of its vectors is the same for all of them. To realize this condition,
we employed the WSE (eq. (3)) as the distortion measure and we assigned a very high weight to the output component
with respect to the one assigned to the input components. In particular, we chose wy = we = 1 and ws = 100 (the same
result was obtained also for w3 = 10 and, obviously, with w3 = 1000). So, the clustering algorithm is forced to divide
the patterns by favouring first their membership class and then also the neighbourhood in the bi-dimensional space. We
have verified that, for the problem in question and with the value of the weights reported above, already with a value of
er that generates only two codewords, the related cells are entirely homogeneous. Of course, this does not imply that
two codewords are enough for a correct classification of the data.

The evaluation of the performances occurs in terms of both classification error and number of iterations executed.
o Classification error. Figs. 16 and 17 graphically report the results found when the values ez = 0.01 and e = 0.001
respectively have been used. In both cases, FACS runs for 15 iterations. In the figures mentioned, points represent
learning patterns and circles represent codewords. The decision regions (the black and white ones in the figures)
determined by the codewords are reported, too. For er = 0.01, FACS found a codebook with No = 74, while, for
er = 0.001, a codebook with No = 144 was found. In the first case, there is only one error in the classification of the
learning patterns; in the second case no errors are committed and, as we can see from the figure, the decision-regions
are well defined also when we are not in proximity to learning patterns. Even if FACS runs for 200 iterations, it obtains
the same number of codewords found after 15 iterations.
Afterwards, we have executed the testing of the results obtained by using the same test set employed by Fritzke,
constituted by 576 points. He compares this result with the one obtained by Baum and Lang [53] that, for their best
model, report an average of 29 errors on the test set. Fritzke, with 145 codewords, obtains zero errors on the same test
set; FACS too achieves this result with the 144 codewords of Fig. 17.
o Number of iterations. In [32] Fritzke underlines that, for every learning method, an important practical aspect is
the number of pattern presentations necessary to achieve a satisfying performance. Fritzke says that GCS needs 180
epochs to achieve the above mentioned result and reports comparisons with some earlier methods: Backpropagation [54]
(20000 epochs), Cross Entropy BP [54] (10000 epochs), Cascade-Correlation [55] (1700 epochs) and he says that the
number of epochs required by GCS is about one or two orders of magnitude less than the other techniques reported.
We can see that FACS needs about 15 iterations to obtain the same result as the GCS, i.e. a twelfth of the epochs
required by the GCS. However, after a careful analysis of both FACS and GCS, we have decided that a comparison
performed in these terms is not very precise. In fact, the complexity of the epochs (iterations) can be different for each
of them. From the analysis effected with several profiling tools we have seen that, in similar algorithms, almost the
whole computation time is spent comparing the vectors of the input data set with the vectors of the codebook (distance
calculation). So, we can identify the complexity of an epoch (iteration) as the number of comparisons executed inside it.
But, due to the incremental nature of such algorithms, the number of codewords is not the same for all the iterations,
therefore the complexity of each iteration is different, too.
As regards FACS, for the example reported in the previous subsection, we counted automatically the comparisons
effected and, for ez = 0.001 (that produced the codebook with 144 elements), we found a value of about 0.6 milion for
the 15 iterations executed.
For GCS, we effected the calculation starting from the values given by Fritzke. It begins with 3 neurons (that are
equivalent to our codewords) and, every 240 pattern-presentations, inserts a new neuron until the final number of 145
cells is reached and for a total number of 180 epochs. We estimated that this is equivalent to the execution of about 2.6
milion of comparisons, that is about 4.3 times the number of comparisons effected by FACS.

F.2 Mode 2

The test on the two spirals problem has been treated also working in another mode. From the practical point of view,
the steps to be executed are the same as the previous ones but, now, the clustering phase occurs using only the part of
the patterns related to the input (i.e. the original bi-dimensional patterns) without adding the membership class as the
third component. Besides, we use the SE (eq. (2)) as the measure for the distortion.

Giving to FACS er = 0.01, it has obtained No = 69 codewords, producing 44 classification errors for the learning
patterns. Using, ep = 0.001, it has found N¢ = 143 codewords and 0 errors have been obtained both on the learning
and in the testing set. The results related to the last example are reported in Fig. 18; we can see that this is very similar



to Fig. 17. Also in this test, FACS was stopped after 15 iterations and the same considerations about the computational
complexity of the iterations made for the previous mode can be repeated here.

VI. CONCLUSIONS

This paper has introduced FACS, a new algorithm for clustering and vector quantization that is able to autonomously
find the number of codewords once the desired quantization error is specified. The technique uses some concepts
previously developed for an algorithm called ELBG which works with a prefixed number of codewords and rearranges
them smartly to escape from the local minima of the error function. Comparative studies regarding FACS have shown
that it is able to find good results in very few iterations. For complex clustering applications only 15 iterations are
sufficient. In comparison to previous similar works a significative improvement in the running time has been obtained.

Further studies will be made regarding the use of different distortion measures to obtain detection of elipsoidal and
linear clusters, and planar range segmentation [2]. Other studies will regard the possibility of dealing with input patterns
with variable cardinality.
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Ny, Ne =128 N =512 Ne = 4096

RMSE tir(s) RMSE tin(s) RMSE ti(s)
15 | 20.26 +0.06 | 2.38 +0.04 | 22.39 +0.03 | 8.76 +0.19 | 10.81 +0.02 | 106.57 + 0.56
0o | 29.20+0.07 | 2.25+0.03 | 22.33+0.03 | 8.67 +0.04 | 10.74+ 0.02 | 106.75 + 0.56

TABLE I

AUTHORS: GIUSEPPE PATANE AND MARCO RUSSO




er Ny =15 Niz =200
RMSE5(128) | N¢ | 1284+0.8 | 124.9+0.7
= Ne | 1.003 £ 0.006 | 0.976 = 0.005
29.26 N, 1.028 1
ti(s) | 2.16£0.03 | 2.14+0.03
RMSE(128) | No | 130.8+16 | 1264+12
= Ne | 1.022+0.013 | 0.988 + 0.009
29.20 N, 1.035 1
tit(s) | 2.2140.04 2.17 +£0.03
RMSE5(512) | N¢ | 517.4+3.0 | 496.7+22
= Be | 1.011+0.023 | 0.970 + 0.017
22.39 N, 1.042 1
ti(s) | 7.83£0.05 | 8.29+0.03
RMSE(512) | No | 527.3+4.3 | 504.2+4.9
= Ne 1 1.030+0.008 | 0.985+0.010
22.33 N, 1.046 1
tie(s) | 8.00+0.16 8.41 £ 0.08
RMSE;5(4096) | N¢ | 4143.5+16.7 | 4074.8 £ 16.1
= Jee 1 1.0124+0.004 | 0.995 + 0.004
10.81 N, 1.017 1
tit(s) | 100.23 +1.38 | 103.95 + 1.82
RMSE.(4096) | Nc | 4188.6+14.9 | 4118.9+17.3
= e | 1.023 +0.004 | 1.006 £ 0.004
10.74 N, 1.017 1
tie(s) | 102.39£1.25 | 105.67 £ 1.29
TABLE II

AUTHORS: GIUSEPPE PATANE AND MARCO RUSSO




er Epmin | EPmaz
RMSE;5(128) | N 5 50
= Ne 165 165
29.26 Ne 129 | 1.29
RMSE | 29.20 | 28.96
RMSE;5(512) | Nep 19 50
= Nc 624 624
22.39 Ne 122 | 122
RMSE | 22.14 | 21.88
RMSE;5(4096) | Nep 136 -
= Ne | 4456 -
10.81 as | 109 -
RMSE | 10.78 -
TABLE IIT

AuTHORS: GIUSEPPE PATANE AND MARCO Russo




FOSART FACS
p N¢ | Nigrosart) | MSE | Ne (15 it.)
0.0002 92 122 1109.7 65
0.0008 | 205 111 880.18 124
0.0010 | 323 84 735.42 194
0.0020 | 951 96 437.16 706
0.0050 | 2604 74 199.40 2423
0.0080 | 3816 59 131.16 3701
TABLE IV

AUTHORS: GIUSEPPE PATANE AND MARCO RUSSO
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Fig. 3. Authors: Giuseppe Patane and Marco Russo



Fig. 4. Authors: Giuseppe Patane and Marco Russo
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